Information inequalities for the minimax risk of sequential estimators (with applications)
Lesław Gajek; B. Mizera-Florczak
Applicationes Mathematicae (1998)
- Volume: 25, Issue: 1, page 85-100
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topGajek, Lesław, and Mizera-Florczak, B.. "Information inequalities for the minimax risk of sequential estimators (with applications)." Applicationes Mathematicae 25.1 (1998): 85-100. <http://eudml.org/doc/219196>.
@article{Gajek1998,
abstract = {Information inequalities for the minimax risk of sequential estimators are derived in the case where the loss is measured by the squared error of estimation plus a linear functional of the number of observations. The results are applied to construct minimax sequential estimators of: the failure rate in an exponential model with censored data, the expected proportion of uncensored observations in the proportional hazards model, the odds ratio in a binomial distribution and the expectation of exponential type random variables.},
author = {Gajek, Lesław, Mizera-Florczak, B.},
journal = {Applicationes Mathematicae},
keywords = {odds ratio; information inequalities; censored data; minimax estimation; proportional hazard model; proportional hazards model},
language = {eng},
number = {1},
pages = {85-100},
title = {Information inequalities for the minimax risk of sequential estimators (with applications)},
url = {http://eudml.org/doc/219196},
volume = {25},
year = {1998},
}
TY - JOUR
AU - Gajek, Lesław
AU - Mizera-Florczak, B.
TI - Information inequalities for the minimax risk of sequential estimators (with applications)
JO - Applicationes Mathematicae
PY - 1998
VL - 25
IS - 1
SP - 85
EP - 100
AB - Information inequalities for the minimax risk of sequential estimators are derived in the case where the loss is measured by the squared error of estimation plus a linear functional of the number of observations. The results are applied to construct minimax sequential estimators of: the failure rate in an exponential model with censored data, the expected proportion of uncensored observations in the proportional hazards model, the odds ratio in a binomial distribution and the expectation of exponential type random variables.
LA - eng
KW - odds ratio; information inequalities; censored data; minimax estimation; proportional hazard model; proportional hazards model
UR - http://eudml.org/doc/219196
ER -
References
top- M. Alvo (1977), Bayesian sequential estimation, Ann. Statist. 5, 955-968. Zbl0368.62061
- Y. S. Chow, H. Robbins and D. Siegmund (1971), Great Expectations: The Theory of Optimal Stopping, Houghton Mifflin, Boston. Zbl0233.60044
- S. Csörgő (1988), Estimation in the proportional hazards model of random censorship, Statistics 19, 437-463.
- S. Csörgő and J. Mielniczuk (1988), Density estimation in the simple proportional hazards model, Statist. Probab. Letters 6, 419-426. Zbl0691.62039
- L. Gajek (1987), An improper Cramér-Rao lower bound, Zastos. Mat. 19, 241-256. Zbl0644.62027
- L. Gajek (1988), On minimax value in the scale model with truncated data, Ann. Statist. 16, 669-677. Zbl0645.62011
- L. Gajek and U. Gather (1991), Estimating a scale parameter under censorship, Statistics 22, 529-549. Zbl0742.62028
- J. C. Gardiner and V. Susarla (1984), Risk-efficient estimation of the mean exponential survival time under random censoring, Proc. Nat. Acad. Sci. U.S.A. 81, 5906-5909. Zbl0557.62074
- J. C. Gardiner and V. Susarla (1991), Some asymptotic distribution results in time-sequential estimation of the mean exponential survival time, Canad. J. Statist. 19, 425-436.
- J. C. Gardiner, V. Susarla and J. van Ryzin (1986), Time sequential estimation of the exponential mean under random withdrawals, Ann. Statist. 14, 607-618. Zbl0603.62088
- J. A. Koziol and S. B. Green (1976), A Cramér-von Mises statistic for randomly censored data, Biometrika 63, 465-474. Zbl0344.62018
- E. L. Lehmann (1983), Theory of Point Estimation, Wiley, New York. Zbl0522.62020
- R. Magiera (1977), On sequential minimax estimation for the exponential class of processes, Zastos. Mat. 15, 445-454. Zbl0371.62115
- B. Mizera (1996), Lower bounds on the minimax risk of sequential estimators, Statistics 28, 123-129. Zbl0864.62055
- W. Rudin (1976), Principles of Mathematical Analysis, McGraw-Hill, New York. Zbl0346.26002
- M. Tahir (1988), Asymptotically optimal Bayesian sequential point estimation with censored data, Sequential Anal. 7, 227-237. Zbl0689.62066
- J. Wolfowitz (1947), The efficiency of sequential estimates and Wald's equation for sequential processes, Ann. Math. Statist. 19, 215-230. Zbl0032.04203
- M. Woodroofe (1982), Nonlinear Renewal Theory in Sequential Analysis, CBMS-NSF Regional Conf. Ser. Appl. Math. 39, SIAM, Philadelphia. Zbl0487.62062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.