Besov spaces and function series on Lie groups

Leszek Skrzypczak

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 1, page 139-147
  • ISSN: 0010-2628

Abstract

top
In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.

How to cite

top

Skrzypczak, Leszek. "Besov spaces and function series on Lie groups." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 139-147. <http://eudml.org/doc/21920>.

@article{Skrzypczak1993,
abstract = {In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.},
author = {Skrzypczak, Leszek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Besov spaces; Harish-Chandra-Fourier series; absolute convergence; two-sided Harish-Chandra's Fourier series; Zygmund-Hölder spaces},
language = {eng},
number = {1},
pages = {139-147},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Besov spaces and function series on Lie groups},
url = {http://eudml.org/doc/21920},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Skrzypczak, Leszek
TI - Besov spaces and function series on Lie groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 139
EP - 147
AB - In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.
LA - eng
KW - Besov spaces; Harish-Chandra-Fourier series; absolute convergence; two-sided Harish-Chandra's Fourier series; Zygmund-Hölder spaces
UR - http://eudml.org/doc/21920
ER -

References

top
  1. Chavel I., Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984. Zbl0551.53001MR0768584
  2. Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta Math. 116 (1966), 1-111. (1966) Zbl0199.20102MR0219666
  3. Price J.F., Lie Groups and Compact Groups, University Press, Cambridge, 1979. Zbl0348.22001MR0450449
  4. Robinson D.W., Lie groups and Lipschitz spaces, Duke J. Math. 57 (1988), 357-395. (1988) Zbl0687.46024MR0962512
  5. Robinson D.W., Lipschitz operators, J. Funct. Anal. 85 (1989), 179-211. (1989) Zbl0705.47037MR1005861
  6. Schmeisser H.J., Triebel H., Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987. Zbl0661.46025MR0891189
  7. Skrzypczak L., Traces of function spaces F p , q s - B p , q s type on submanifolds, Math. Nachr. 146 (1990), 137-147. (1990) Zbl0739.46025MR1069056
  8. Triebel H., Diffeomorphism properties and pointwise multiplier for function spaces, in: Function Spaces, Proc. Inter. Conf. Poznań 1986, Teubner-Texte, Leipzig, 1988, 75-84. Zbl0678.46026MR1066519
  9. Triebel H., Function spaces on Lie groups, the Riemannian approach, J. London Math. Soc. 35 (1987), 327-338. (1987) Zbl0587.46036MR0881521
  10. Triebel H., How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups?, Zeitsch. Anal. ihre Anwend. 7 (1988), 471-480. (1988) Zbl0685.46020MR0977967
  11. Triebel H., Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), 299-337. (1986) Zbl0664.46026MR0884191
  12. Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983. Zbl1104.46001MR0781540
  13. Warner B., Harmonic Analysis on Semi-simple Lie groups I, Springer-Verlag, Berlin, 1972. Zbl0265.22020MR0498999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.