Convergence acceleration by the E + p -algorithm

A. Fdil

Applicationes Mathematicae (1998)

  • Volume: 25, Issue: 3, page 327-338
  • ISSN: 1233-7234

Abstract

top
A new algorithm which generalizes the E-algorithm is presented. It is called the E + p -algorithm. Some results on convergence acceleration for the E + p -algorithm are proved. Some applications are given.

How to cite

top

Fdil, A.. "Convergence acceleration by the $E_{+p}$-algorithm." Applicationes Mathematicae 25.3 (1998): 327-338. <http://eudml.org/doc/219207>.

@article{Fdil1998,
abstract = {A new algorithm which generalizes the E-algorithm is presented. It is called the $E_\{+p\}$-algorithm. Some results on convergence acceleration for the $E_\{+p\}$-algorithm are proved. Some applications are given.},
author = {Fdil, A.},
journal = {Applicationes Mathematicae},
keywords = {convergence acceleration; E-algorithm; linear periodic convergence; numerical quadrature; -algorithm},
language = {eng},
number = {3},
pages = {327-338},
title = {Convergence acceleration by the $E_\{+p\}$-algorithm},
url = {http://eudml.org/doc/219207},
volume = {25},
year = {1998},
}

TY - JOUR
AU - Fdil, A.
TI - Convergence acceleration by the $E_{+p}$-algorithm
JO - Applicationes Mathematicae
PY - 1998
VL - 25
IS - 3
SP - 327
EP - 338
AB - A new algorithm which generalizes the E-algorithm is presented. It is called the $E_{+p}$-algorithm. Some results on convergence acceleration for the $E_{+p}$-algorithm are proved. Some applications are given.
LA - eng
KW - convergence acceleration; E-algorithm; linear periodic convergence; numerical quadrature; -algorithm
UR - http://eudml.org/doc/219207
ER -

References

top
  1. [1] C. Brezinski, Algorithmes d'Accélération de la Convergence en Analyse Numérique. Etude numérique, Technip, Paris, 1978. Zbl0396.65001
  2. [2] C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980), 175-187. Zbl0444.65001
  3. [3] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice, North-Holland, Amsterdam, 1991. Zbl0814.65001
  4. [4] J. P. Delahaye, Sequence Transformations, Springer, Berlin, 1988. 
  5. [5] A. Fdil, Some results on convergence acceleration for the E -algorithm, Appl. Math. (Warsaw) 24 (1997), 393-413. Zbl0890.65004
  6. [6] L. Fox, Romberg integration for a class of singular integrands, Comput. J. 10 (1967), 87-93. Zbl0158.16001
  7. [7] H. L. Gray and W. D. Clark, On a class of nonlinear transformations and their applications to the evaluation of infinite series, J. Res. Nat. Bur. Standards Sect. B 73 (1969), 251-274. Zbl0187.10202
  8. [8] T. Håvie, Error derivation in Romberg integration, BIT 12 (1972), 516-527. Zbl0268.65019
  9. [9] T. Håvie, Generalized Neville type extrapolation schemes, ibid. 19 (1979), 204-213. Zbl0404.65001
  10. [10] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev. 13 (1971), 435-490. Zbl0229.65005
  11. [11] J. N. Lyness, Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity, J. Comput. Phys. 20 (1976), 346-364. Zbl0336.65015
  12. [12] J. N. Lyness and B. W. Ninham, Numerical quadrature and asymptotic expansions, Math. Comp. 21 (1967), 162-177. Zbl0178.18402
  13. [13] C. Schneider, Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfallen, Numer. Math. 24 (1975), 177-184. Zbl0291.65002
  14. [14] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1984. Zbl0566.47018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.