Nonstationary Marangoni convection

Alfred Wagner

Applicationes Mathematicae (1999)

  • Volume: 26, Issue: 2, page 195-220
  • ISSN: 1233-7234

How to cite

top

Wagner, Alfred. "Nonstationary Marangoni convection." Applicationes Mathematicae 26.2 (1999): 195-220. <http://eudml.org/doc/219233>.

@article{Wagner1999,
author = {Wagner, Alfred},
journal = {Applicationes Mathematicae},
keywords = {free boundary; nonstationary; Navier-Stokes; nonstationary Marangoni convection; fluid drop; surface tension; incompressible Navier-Stokes equations; heat equation; energy estimates; Rothe method; fixed point argument; existence; uniqueness; free-boundary problem},
language = {eng},
number = {2},
pages = {195-220},
title = {Nonstationary Marangoni convection},
url = {http://eudml.org/doc/219233},
volume = {26},
year = {1999},
}

TY - JOUR
AU - Wagner, Alfred
TI - Nonstationary Marangoni convection
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 2
SP - 195
EP - 220
LA - eng
KW - free boundary; nonstationary; Navier-Stokes; nonstationary Marangoni convection; fluid drop; surface tension; incompressible Navier-Stokes equations; heat equation; energy estimates; Rothe method; fixed point argument; existence; uniqueness; free-boundary problem
UR - http://eudml.org/doc/219233
ER -

References

top
  1. [ADN] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundaryfor solutions of elliptic partial differential equations satisfying generalboundary conditions II, Comm. Pure Appl. Math. 7 (1964), 35-92. Zbl0123.28706
  2. [Aubin] T. Aubin, Nonlinear Analysis on Manifols. Monge-AmpèreEquations, Springer, New York, 1982. Zbl0512.53044
  3. [Beale1] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math. 34 (1981), 359-392. Zbl0464.76028
  4. [Beale2] J. T. Beale, Large time regularity of viscous surface waves,Arch. Rational Mech. Anal. 84 (1983/84), 307-352. Zbl0545.76029
  5. [Bem1] J. Bemelmans, Gleichgewichtsfiguren zäher Flüssigkeitenmit Oberflächenspannung, Analysis 1 (1981), 241-282. 
  6. [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
  7. Kacur[] J. Kacur, Method of Rothe in Evolution Equations, Teubner,Leipzig, 1985. Zbl0582.65084
  8. [Lad] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985. 
  9. [L&M] J. L. Lions and E. Magenes, Nonhomogeneous Boundary ValueProblems and Applications, Springer, New York, 1972. 
  10. [Olej] O. A. Oleĭnik, Korn's type inequalities and applications to elasticity, preprint. 
  11. [Sol1] V. A. Solonnikov, Solvability of the problem of the motion of a viscous incompressible fluid bounded by a free surface, Izv. Akad. Nauk SSSR 41 (1977), 1388-1424 (in Russian). 
  12. [Sol2] V. A. Solonnikov, Solvability of the problem of evolution of an isolated volume of viscous incompressible capillary fluid, Zap. Nauchn. Sem. LOMI 140 (1984), 179-186 (in Russian). Zbl0551.76022
  13. [Sol3] V. A. Solonnikov, Unsteady motion of a finite mass of fluid,bounded by a free surface, ibid. 152 (1986), 137-157 (in Russian). 
  14. [Sol4] V. A. Solonnikov, Evolution of an isolated volume of aviscous incompressible capillary fluid for large time values,Vestnik Leningrad Univ. 1987, no. 3, 49-55. 
  15. [Sol5] V. A. Solonnikov, On a nonstationary motion of a finite massof a liquid bounded by a free surface, in: Lecture Notes Pure Appl. Math. 118, Dekker, 1989, 647-653. 
  16. [Sol&Shch] V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for the stationarysystem of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199. 
  17. [Sol&Tan] V. A. Solonnikov and A. Tani, A problem with free boundary for Navier-Stokes equations for a compressible fluid in the presence of surface tension, Zap. Nauchn. Sem. LOMI 182 (1990), 142-148 (in Russian). Zbl0723.76026
  18. [Tem] R. Temam, Navier-Stokes Equations, 2nd ed., North-Holland, 1979. 
  19. [ZZ1] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscousheat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170. 
  20. [ZZ2] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting fluids, Bull. Polish Acad. Sci. 42 (1994), 197-205. Zbl0814.76075
  21. [ZZ3] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of aviscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math.61 (1995), 141-188. Zbl0833.35156
  22. [ZZ4] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting capillary fluids, Bull. Polish Acad. Sci. 43 (1995), 423-444. Zbl0880.76065
  23. [ZZ5] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundaryproblem for equations of a viscous compressible heat conducting fluid, Ann. Polon. Math. 63 (1996), 199-221. Zbl0862.35147
  24. [ZZ6] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for aviscous compressible heat conducting capillary fluid bounded by a free surface, ibid. Zbl0885.35101
  25. [ZZ7] E. Zadrzyńska and W. M. Zajączkowski, Local existence of solutions of a free boundaryproblem for equations of compressible viscous heat-conducting fluids, Appl. Math. (Warsaw) 25 (1998), 179-220. Zbl0906.35079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.