Nonstationary Marangoni convection
Applicationes Mathematicae (1999)
- Volume: 26, Issue: 2, page 195-220
- ISSN: 1233-7234
Access Full Article
topHow to cite
topWagner, Alfred. "Nonstationary Marangoni convection." Applicationes Mathematicae 26.2 (1999): 195-220. <http://eudml.org/doc/219233>.
@article{Wagner1999,
author = {Wagner, Alfred},
journal = {Applicationes Mathematicae},
keywords = {free boundary; nonstationary; Navier-Stokes; nonstationary Marangoni convection; fluid drop; surface tension; incompressible Navier-Stokes equations; heat equation; energy estimates; Rothe method; fixed point argument; existence; uniqueness; free-boundary problem},
language = {eng},
number = {2},
pages = {195-220},
title = {Nonstationary Marangoni convection},
url = {http://eudml.org/doc/219233},
volume = {26},
year = {1999},
}
TY - JOUR
AU - Wagner, Alfred
TI - Nonstationary Marangoni convection
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 2
SP - 195
EP - 220
LA - eng
KW - free boundary; nonstationary; Navier-Stokes; nonstationary Marangoni convection; fluid drop; surface tension; incompressible Navier-Stokes equations; heat equation; energy estimates; Rothe method; fixed point argument; existence; uniqueness; free-boundary problem
UR - http://eudml.org/doc/219233
ER -
References
top- [ADN] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundaryfor solutions of elliptic partial differential equations satisfying generalboundary conditions II, Comm. Pure Appl. Math. 7 (1964), 35-92. Zbl0123.28706
- [Aubin] T. Aubin, Nonlinear Analysis on Manifols. Monge-AmpèreEquations, Springer, New York, 1982. Zbl0512.53044
- [Beale1] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math. 34 (1981), 359-392. Zbl0464.76028
- [Beale2] J. T. Beale, Large time regularity of viscous surface waves,Arch. Rational Mech. Anal. 84 (1983/84), 307-352. Zbl0545.76029
- [Bem1] J. Bemelmans, Gleichgewichtsfiguren zäher Flüssigkeitenmit Oberflächenspannung, Analysis 1 (1981), 241-282.
- [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
- Kacur[] J. Kacur, Method of Rothe in Evolution Equations, Teubner,Leipzig, 1985. Zbl0582.65084
- [Lad] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985.
- [L&M] J. L. Lions and E. Magenes, Nonhomogeneous Boundary ValueProblems and Applications, Springer, New York, 1972.
- [Olej] O. A. Oleĭnik, Korn's type inequalities and applications to elasticity, preprint.
- [Sol1] V. A. Solonnikov, Solvability of the problem of the motion of a viscous incompressible fluid bounded by a free surface, Izv. Akad. Nauk SSSR 41 (1977), 1388-1424 (in Russian).
- [Sol2] V. A. Solonnikov, Solvability of the problem of evolution of an isolated volume of viscous incompressible capillary fluid, Zap. Nauchn. Sem. LOMI 140 (1984), 179-186 (in Russian). Zbl0551.76022
- [Sol3] V. A. Solonnikov, Unsteady motion of a finite mass of fluid,bounded by a free surface, ibid. 152 (1986), 137-157 (in Russian).
- [Sol4] V. A. Solonnikov, Evolution of an isolated volume of aviscous incompressible capillary fluid for large time values,Vestnik Leningrad Univ. 1987, no. 3, 49-55.
- [Sol5] V. A. Solonnikov, On a nonstationary motion of a finite massof a liquid bounded by a free surface, in: Lecture Notes Pure Appl. Math. 118, Dekker, 1989, 647-653.
- [Sol&Shch] V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for the stationarysystem of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199.
- [Sol&Tan] V. A. Solonnikov and A. Tani, A problem with free boundary for Navier-Stokes equations for a compressible fluid in the presence of surface tension, Zap. Nauchn. Sem. LOMI 182 (1990), 142-148 (in Russian). Zbl0723.76026
- [Tem] R. Temam, Navier-Stokes Equations, 2nd ed., North-Holland, 1979.
- [ZZ1] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscousheat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170.
- [ZZ2] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting fluids, Bull. Polish Acad. Sci. 42 (1994), 197-205. Zbl0814.76075
- [ZZ3] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of aviscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math.61 (1995), 141-188. Zbl0833.35156
- [ZZ4] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting capillary fluids, Bull. Polish Acad. Sci. 43 (1995), 423-444. Zbl0880.76065
- [ZZ5] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundaryproblem for equations of a viscous compressible heat conducting fluid, Ann. Polon. Math. 63 (1996), 199-221. Zbl0862.35147
- [ZZ6] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for aviscous compressible heat conducting capillary fluid bounded by a free surface, ibid. Zbl0885.35101
- [ZZ7] E. Zadrzyńska and W. M. Zajączkowski, Local existence of solutions of a free boundaryproblem for equations of compressible viscous heat-conducting fluids, Appl. Math. (Warsaw) 25 (1998), 179-220. Zbl0906.35079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.