On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface

Ewa Zadrzyńska; Wojciech M. Zajączkowski

Annales Polonici Mathematici (1995)

  • Volume: 61, Issue: 2, page 141-188
  • ISSN: 0066-2216

Abstract

top
We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat conducting fluid. The inequality is essential in proving the global existence of solutions.

How to cite

top

Ewa Zadrzyńska, and Wojciech M. Zajączkowski. "On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface." Annales Polonici Mathematici 61.2 (1995): 141-188. <http://eudml.org/doc/262296>.

@article{EwaZadrzyńska1995,
abstract = {We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat conducting fluid. The inequality is essential in proving the global existence of solutions.},
author = {Ewa Zadrzyńska, Wojciech M. Zajączkowski},
journal = {Annales Polonici Mathematici},
keywords = {free boundary; compressible viscous heat conducting fluid; global differential inequality; free boundary problem for a viscous compressible heat conducting fluid},
language = {eng},
number = {2},
pages = {141-188},
title = {On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface},
url = {http://eudml.org/doc/262296},
volume = {61},
year = {1995},
}

TY - JOUR
AU - Ewa Zadrzyńska
AU - Wojciech M. Zajączkowski
TI - On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface
JO - Annales Polonici Mathematici
PY - 1995
VL - 61
IS - 2
SP - 141
EP - 188
AB - We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat conducting fluid. The inequality is essential in proving the global existence of solutions.
LA - eng
KW - free boundary; compressible viscous heat conducting fluid; global differential inequality; free boundary problem for a viscous compressible heat conducting fluid
UR - http://eudml.org/doc/262296
ER -

References

top
  1. [1] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representation of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian). 
  2. [2] L. Landau and E. Lifschitz, Mechanics of Continuum Media, Nauka, Moscow, 1984; new edition: Hydrodynamics, Nauka, Moscow, 1986 (in Russian). 
  3. [3] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104. Zbl0429.76040
  4. [4] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A 55 (1979), 337-342. Zbl0447.76053
  5. [5] A. Matsumura and T. Nishida, The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluids, preprint of Univ. of Wisconsin, MRC Technical Summary Report no. 2237, 1981. Zbl0543.76099
  6. [6] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in: Computing Methods in Applied Sciences and Engineering, V. R. Glovinski and J. L. Lions (eds.), North-Holland, Amsterdam, 1982. Zbl0505.76083
  7. [7] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464. Zbl0543.76099
  8. [8] K. Pileckas and W. M. Zajączkowski, On the boundary problem for stationary compressible Navier-Stokes equations, Comm. Math. Phys. 128 (1990), 1-36. 
  9. [9] V. A. Solonnikov, On an unsteady flow of a finite mass of a liquid bounded by a free surface, Zap. Nauchn. Sem. LOMI 152 (1986), 137-157 (in Russian); English transl.: J. Soviet Math. 10 (1988), 672-686. Zbl0614.76026
  10. [10] V. A. Solonnikov, Solvability of the evolution problem for an isolated mass of a viscous incompressible capillary liquid, Zap. Nauchn. Sem. LOMI 140 (1984), 179-186 (in Russian); English transl.: J. Soviet Math. 33 (1986), 223-238. Zbl0551.76022
  11. [11] V. A. Solonnikov, On unsteady motion of an isolated volume of a viscous incompressible fluid, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 1065-1087 (in Russian). 
  12. [12] V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of viscous compressible barotropic liquids, preprint of Paderborn University. Zbl0786.35106
  13. [13] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa (4) 10 (1983), 607-647. Zbl0542.35062
  14. [14] A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solution in the general case, Comm. Math. Phys. 103 (1986), 259-296. Zbl0611.76082
  15. [15] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscous heat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170. Zbl0812.35102
  16. [16] E. Zadrzyńska and W. M. Zajączkowski, On global motion of a compressible heat conducting fluid bounded by a free surface, Acta Appl. Math., to appear. Zbl0813.35130
  17. [17] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting fluids, Bull. Polish Acad. Sci. Tech. Sci. 42 (1994), 197-207. Zbl0814.76075
  18. [18] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting capillary fluids, to appear. Zbl0880.76065
  19. [19] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of a viscous compressible heat conducting capillary fluid bounded by a free surface, to appear. Zbl0885.35101
  20. [20] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid, Inst. Math., Pol. Acad. Sci., Prepr. 523 (1994), 1-22. Zbl0874.35097
  21. [21] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting capillary fluid, to appear. Zbl0874.35097
  22. [22] W. M. Zajączkowski, On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface, Dissertationes Math. 324 (1993). Zbl0771.76059
  23. [23] W. M. Zajączkowski, On local motion of a compressible viscous fluid bounded by a free surface, in: Partial Differential Equations, Banach Center Publ. 27, Inst. Math., Polish Acad. Sci., Warszawa, 1992, 511-553. Zbl0791.35105
  24. [24] W. M. Zajączkowski, Existence of local solutions for free boundary problems for viscous compressible barotropic fluids, Ann. Polon. Math. 60 (1995), 255-287. Zbl0923.35134
  25. [25] W. M. Zajączkowski, On Nonstationary Motion of A Compressible Barotropic Viscous Capillary Fluid Bounded By A Free Surface, Siam J. Math. Anal. 25 (1994), 1-84. Zbl0813.35086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.