Quadratic Isochronous centers commute

M. Sabatini

Applicationes Mathematicae (1999)

  • Volume: 26, Issue: 3, page 357-362
  • ISSN: 1233-7234

Abstract

top
We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.

How to cite

top

Sabatini, M.. "Quadratic Isochronous centers commute." Applicationes Mathematicae 26.3 (1999): 357-362. <http://eudml.org/doc/219245>.

@article{Sabatini1999,
abstract = {We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.},
author = {Sabatini, M.},
journal = {Applicationes Mathematicae},
keywords = {commuting vector field; isochronous center; quadratic polynomial system; quadratic isochronous centers; quadratic plane differential system},
language = {eng},
number = {3},
pages = {357-362},
title = {Quadratic Isochronous centers commute},
url = {http://eudml.org/doc/219245},
volume = {26},
year = {1999},
}

TY - JOUR
AU - Sabatini, M.
TI - Quadratic Isochronous centers commute
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 3
SP - 357
EP - 362
AB - We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.
LA - eng
KW - commuting vector field; isochronous center; quadratic polynomial system; quadratic isochronous centers; quadratic plane differential system
UR - http://eudml.org/doc/219245
ER -

References

top
  1. [AFG] A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, preprint. Zbl1021.34022
  2. [C] R. Conti, Centers of polynomial systems in R 2 , preprint, Firenze, 1990. 
  3. [CDL] C. J. Christopher, J. Devlin and N. G. Lloyd, On the classification of Liénard systems with amplitude-independent periods, preprint. 
  4. [CGG1] J. Chavarriga, J. Giné and I. García, Isochronous centers of cubic systems with degenerate infinity, Differential Equations Dynam. Systems 7 (1999), to appear. Zbl0982.34025
  5. [CGG2] J. Chavarriga, J. Giné and I. García, Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomials, Bull. Sci. Math. 123 (1999), 77-96. Zbl0921.34032
  6. [CGG3] J. Chavarriga, J. Giné and I. García, Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials, preprint, Univ. de Lleida. Zbl0978.34028
  7. [CJ] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989), 433-486. Zbl0678.58027
  8. [D] J. Devlin, Coexisting isochronous and nonisochronous centers, Bull. Lond. Math. Soc. 28 (1996), 495-500. Zbl0853.34032
  9. [GGM1] A. Gasull, A. Guillamon and V. Mañosa, An explicit expression of the first Lyapunov and period constants with applications, J. Math. Anal. Appl. 211 (1997), 190-212. Zbl0882.34040
  10. [GGM2] A. Gasull, A. Guillamon and V. Mañosa, Centre and isochronicity conditions for systems with homogeneous nonlinearities, in: Proc. 2nd Catalan Days on Appl. Math., Collect. Études, Presses Univ. Perpignan, Perpignan, 1995, 105-116. Zbl0909.34030
  11. [L] W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contrib. Differential Equations 3 (1964), 21-36. Zbl0139.04301
  12. [MRT] P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations 121 (1995), 67-108. Zbl0830.34023
  13. [MS] L. Mazzi and M. Sabatini, Commutators and linearizations of isochronous centers, preprint UTM 482, Univ. of Trento, 1996. 
  14. [NS] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, NJ, 1960. Zbl0089.29502
  15. [O] Z. Opial, Sur les périodes des solutions de l'équation différentielle x'' + g(x) = 0, Ann. Polon. Math. 10 (1961), 49-72. Zbl0096.29604
  16. [P] I. I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, Differential Equations 5 (1969), 796-802. 
  17. [S1] M. Sabatini, On the period function of Liénard systems, J. Differential Equations 152 (1999), 467-487. Zbl0922.34028
  18. [S2] M. Sabatini, Quadratic isochronous centers commute, preprint UTM 461, Univ. of Trento, 1995. 
  19. [S3] M. Sabatini, Qualitative analysis of commuting flows on two-dimensional manifolds, in: EQUADIFF 95-International Conf. on Differential Equations (Lisboã, 1995), L. Magalhaes, C. Rocha and L. Sanchez (eds.), World Sci., Singapore, 1998, 494-497. 
  20. [S4] M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dynam. Systems 5 (1997), 91-99. 
  21. [S5] M. Sabatini, Dynamics of commuting systems on two-dimensional manifolds, Ann. Mat. Pura Appl. (4) 173 (1997), 213-232. Zbl0941.34018
  22. [SC] G. Sansone e R. Conti, Equazioni differenziali non lineari, Cremonese, Roma, 1956. Zbl0075.26803
  23. [U] M. Urabe, Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961), 569-578. Zbl0100.29901
  24. [V] M. Villarini, Regularity properties of the period function near a center of a planar vector field, Nonlinear Anal. 19 (1992), 787-803. Zbl0769.34033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.