Linearization of Arbitrary products of classical orthogonal polynomials

Mahouton Hounkonnou; Said Belmehdi; André Ronveaux

Applicationes Mathematicae (2000)

  • Volume: 27, Issue: 2, page 187-196
  • ISSN: 1233-7234

Abstract

top
A procedure is proposed in order to expand w = j = 1 N P i j ( x ) = k = 0 M L k P k ( x ) where P i ( x ) belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ( M = j = 1 N i j ). We first derive a linear differential equation of order 2 N satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients L k . We develop in detail the two cases [ P i ( x ) ] N , P i ( x ) P j ( x ) P k ( x ) and give the recurrencerelation in some cases (N=3,4), when the polynomials P i ( x ) are monic Hermite orthogonal polynomials.

How to cite

top

Hounkonnou, Mahouton, Belmehdi, Said, and Ronveaux, André. "Linearization of Arbitrary products of classical orthogonal polynomials." Applicationes Mathematicae 27.2 (2000): 187-196. <http://eudml.org/doc/219266>.

@article{Hounkonnou2000,
abstract = {A procedure is proposed in order to expand $w=\prod ^N_\{j=1\} P_\{i_j\}(x)=\sum ^M_\{k=0\} L_ k P_ k(x)$ where $P_i(x)$ belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ($M=\sum ^N_\{j=1\} i_j$). We first derive a linear differential equation of order $2^N$ satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients $L_k$. We develop in detail the two cases $[P_i(x)]^N$, $P_ i(x)P_ j(x)P_ k(x)$ and give the recurrencerelation in some cases (N=3,4), when the polynomials $P_i(x)$are monic Hermite orthogonal polynomials.},
author = {Hounkonnou, Mahouton, Belmehdi, Said, Ronveaux, André},
journal = {Applicationes Mathematicae},
keywords = {classical orthogonal polynomials; Hermite orthogonal polynomials; linearization coefficients; recurrence relations; differential equations},
language = {eng},
number = {2},
pages = {187-196},
title = {Linearization of Arbitrary products of classical orthogonal polynomials},
url = {http://eudml.org/doc/219266},
volume = {27},
year = {2000},
}

TY - JOUR
AU - Hounkonnou, Mahouton
AU - Belmehdi, Said
AU - Ronveaux, André
TI - Linearization of Arbitrary products of classical orthogonal polynomials
JO - Applicationes Mathematicae
PY - 2000
VL - 27
IS - 2
SP - 187
EP - 196
AB - A procedure is proposed in order to expand $w=\prod ^N_{j=1} P_{i_j}(x)=\sum ^M_{k=0} L_ k P_ k(x)$ where $P_i(x)$ belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ($M=\sum ^N_{j=1} i_j$). We first derive a linear differential equation of order $2^N$ satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients $L_k$. We develop in detail the two cases $[P_i(x)]^N$, $P_ i(x)P_ j(x)P_ k(x)$ and give the recurrencerelation in some cases (N=3,4), when the polynomials $P_i(x)$are monic Hermite orthogonal polynomials.
LA - eng
KW - classical orthogonal polynomials; Hermite orthogonal polynomials; linearization coefficients; recurrence relations; differential equations
UR - http://eudml.org/doc/219266
ER -

References

top
  1. [1] R. Askey, Orthogonal Polynomials and SpecialFunctions, Regional Conf. Ser. Appl. Math. 21, SIAM, 1975, 39-46. 
  2. [2] S. Belmehdi, S. Lewanowicz and A. Ronveaux, Linearizationof product of orthogonal polynomials of a discrete variable, Appl. Math. (Warsaw) 24 (1997), 445-455. Zbl0891.33006
  3. [3] T. S. Chihara, An Introduction toOrthogonal Polynomials, Gordon and Breach, New York, 1978. 
  4. [4] E. Feldheim, Quelques nouvelles relations pour les polynômes d'Hermite, J. London Math. Soc. 13 (1938), 22-29. Zbl64.0354.05
  5. [5] E. Godoy, I. Area, A. Ronveaux and A. Zarzo, Minimalrecurrence relations for connection coefficients between classical orthogonalpolynomials: Continuous case, J. Comput. Appl. Math. 84 (1997), 257-275. Zbl0909.65008
  6. [6] E. W. Hobson, The Theory of Spherical andEllipsoidal Harmonics, Chelsea, New York, 1965. 
  7. [7] R. Hylleraas, Linearization of products ofJacobi polynomials, Math. Scand. 10 (1962), 189-200. Zbl0109.29603
  8. [8] R. Lasser, Linearization of the product ofassociated Legendre polynomials, SIAM J. Math. Anal. 14 (1983), 403-408. Zbl0509.33007
  9. [9] S. Lewanowicz, Second-order recurrence relationfor the linearization coefficients of the classical polynomials, J.Comput. Appl. Math. 69 (1994), 159-170. Zbl0885.33003
  10. [10] S. Lewanowicz and A. Ronveaux, Linearization of powers of classicalorthogonal polynomial of a discrete variable, J. Math. Phys. Sci. (Madras), in print. 
  11. [11] A. Nikiforov et V. Ouvarov, 
  12. [12] Élémentsde la Théorie des Fonctions Spéciales, Mir, Moscow, 1976. 
  13. [13] A. Ronveaux, Orthogonal polynomials: Connection andlinearization coefficients, in: Proc. International Workshop onOrthogonal Polynomials in Mathematical Physics in honour of Professor André Ronveaux (Leganes, Universidad Carlos III, Madrid, 1996), M. Alfaro et al. (eds.), 131-142. Zbl0928.33009
  14. [14] A. Ronveaux, Some 4th order differentialequations related to classical orthogonal polynomials, in: Sobre polynomios orthogonales y applicationes(Vigo, 1988), A. Cachafeiro and E. Godoy (eds.), Esc. Tec. Super. Ing. Ind. Vigo, 1989, 159-169. 
  15. [15] A. Ronveaux, S. Belmehdi, E. Godoy and A. Zarzo, Recurrence relations approach for connection coefficients. Applications toclassical discrete orthogonal polynomials, in: CRM Proc. Lecture Notes 9, Amer. Math. Soc., 1996, 319-335. Zbl0862.33006
  16. [16] A. Ronveaux, E. Godoy and A. Zarzo, Recurrencerelations for connection coefficients between two families of orthogonalpolynomials, J. Comput. Appl. Math. 62 (1995), 67-73. Zbl0876.65005
  17. [17] A. Ronveaux, M. N. Hounkonnou and S. Belmehdi, Recurrence relations between linearization coefficients oforthogonal polynomials, Report Laboratoire de PhysiqueMathématique FUNDP, Namur, 1993. 
  18. [18] A. Ronveaux, M. N. Hounkonnou and S. Belmehdi, Generalized linearization problems, J. Phys. A. 28 (1995), 4423-4430. Zbl0867.33003
  19. [19] M. E. Rose, Elementary Theory of AngularMomentum, Wiley, New York, 1957. 
  20. [20] I. A. Šapkrarev, Über lineare Differentialgleichungenmit der Eigenschaft dass k-te Potenzen der Integrale einer linearenDifferentiagleichung zweiter Ordnung ihre Integrale sind, Mat. Vesnik(4) 19 (1967), 67-70. 
  21. [21] R. Szwarc, Linearization and connectioncoefficients of orthogonal polynomials, Monatsh. Math. 113 (1992), 319-29. Zbl0766.33008
  22. [22] A. Zarzo, I. Area, E. Godoy and A. Ronveaux, Resultsfor some inversion problems for classical continuous and discrete orthogonalpolynomials, J. Phys. A. 30 (1997), L35-L40. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.