Page 1 Next

Displaying 1 – 20 of 24

Showing per page

A note on poroacoustic traveling waves under Darcy's law: Exact solutions

P. M. Jordan, J. K. Fulford (2011)

Applications of Mathematics

A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are...

An application of shift operators to ordered symmetric spaces

Nils Byrial Andersen, Jérémie M. Unterberger (2002)

Annales de l’institut Fourier

We study the action of elementary shift operators on spherical functions on ordered symmetric spaces m , n of Cayley type, where m denotes the multiplicity of the short roots and n the rank of the symmetric space. For m even we apply this to prove a Paley-Wiener theorem for the spherical Laplace transform defined on m , n by a reduction to the rank 1 case. Finally we generalize our notions and results to B C n type root systems.

Beyond the Gaussian.

Fujii, Kazuyuki (2011)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Caputo-Type Modification of the Erdélyi-Kober Fractional Derivative

Luchko, Yury, Trujillo, Juan (2007)

Fractional Calculus and Applied Analysis

2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05The Caputo fractional derivative is one of the most used definitions of a fractional derivative along with the Riemann-Liouville and the Grünwald- Letnikov ones. Whereas the Riemann-Liouville definition of a fractional derivative is usually employed in mathematical texts and not so frequently in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville fractional derivatives,...

Generalized trigonometric functions in complex domain

Petr Girg, Lukáš Kotrla (2015)

Mathematica Bohemica

We study extension of p -trigonometric functions sin p and cos p to complex domain. For p = 4 , 6 , 8 , , the function sin p satisfies the initial value problem which is equivalent to (*) - ( u ' ) p - 2 u ' ' - u p - 1 = 0 , u ( 0 ) = 0 , u ' ( 0 ) = 1 in . In our recent paper, Girg, Kotrla (2014), we showed that sin p ( x ) is a real analytic function for p = 4 , 6 , 8 , on ( - π p / 2 , π p / 2 ) , where π p / 2 = 0 1 ( 1 - s p ) - 1 / p . This allows us to extend sin p to complex domain by its Maclaurin series convergent on the disc { z : | z | < π p / 2 } . The question is whether this extensions sin p ( z ) satisfies (*) in the sense of differential equations in complex domain. This interesting...

Integro-differential-difference equations associated with the Dunkl operator and entire functions

Néjib Ben Salem, Samir Kallel (2004)

Commentationes Mathematicae Universitatis Carolinae

In this work we consider the Dunkl operator on the complex plane, defined by 𝒟 k f ( z ) = d d z f ( z ) + k f ( z ) - f ( - z ) z , k 0 . We define a convolution product associated with 𝒟 k denoted * k and we study the integro-differential-difference equations of the type μ * k f = n = 0 a n , k 𝒟 k n f , where ( a n , k ) is a sequence of complex numbers and μ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type.

Linearization of Arbitrary products of classical orthogonal polynomials

Mahouton Hounkonnou, Said Belmehdi, André Ronveaux (2000)

Applicationes Mathematicae

A procedure is proposed in order to expand w = j = 1 N P i j ( x ) = k = 0 M L k P k ( x ) where P i ( x ) belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ( M = j = 1 N i j ). We first derive a linear differential equation of order 2 N satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients L k . We develop in detail the two cases [ P i ( x ) ] N , P i ( x ) P j ( x ) P k ( x ) and give the recurrencerelation in some cases (N=3,4), when the polynomials P i ( x ) are monic Hermite orthogonal polynomials.

Linearization of the product of orthogonal polynomials of a discrete variable

Saïd Belmehdi, Stanisław Lewanowicz, André Ronveaux (1997)

Applicationes Mathematicae

Let P k be any sequence of classical orthogonal polynomials of a discrete variable. We give explicitly a recurrence relation (in k) for the coefficients in P i P j = k c ( i , j , k ) P k , in terms of the coefficients σ and τ of the Pearson equation satisfied by the weight function ϱ, and the coefficients of the three-term recurrence relation and of two structure relations obeyed by P k .

On q-asymptotics for q-difference-differential equations with Fuchsian and irregular singularities

Alberto Lastra, Stéphane Malek, Javier Sanz (2012)

Banach Center Publications

This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...

On the meromorphic solutions of a certain type of nonlinear difference-differential equation

Sujoy Majumder, Lata Mahato (2023)

Mathematica Bohemica

The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation f n ( z ) + P d ( z , f ) = p 1 ( z ) e α 1 ( z ) + p 2 ( z ) e α 2 ( z ) , where P d ( z , f ) is a difference-differential polynomial in f ( z ) of degree d n - 1 with small functions of f ( z ) as its coefficients, p 1 , p 2 are nonzero rational functions and α 1 , α 2 are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.

Currently displaying 1 – 20 of 24

Page 1 Next