Nonzero-sum semi-Markov games with countable state spaces

Wojciech Połowczuk

Applicationes Mathematicae (2000)

  • Volume: 27, Issue: 4, page 395-402
  • ISSN: 1233-7234

Abstract

top
We consider nonzero-sum semi-Markov games with a countable state space and compact metric action spaces. We assume that the payoff, mean holding time and transition probability functions are continuous on the action spaces. The main results concern the existence of Nash equilibria for nonzero-sum discounted semi-Markov games and a class of ergodic semi-Markov games with the expected average payoff criterion.

How to cite

top

Połowczuk, Wojciech. "Nonzero-sum semi-Markov games with countable state spaces." Applicationes Mathematicae 27.4 (2000): 395-402. <http://eudml.org/doc/219282>.

@article{Połowczuk2000,
abstract = {We consider nonzero-sum semi-Markov games with a countable state space and compact metric action spaces. We assume that the payoff, mean holding time and transition probability functions are continuous on the action spaces. The main results concern the existence of Nash equilibria for nonzero-sum discounted semi-Markov games and a class of ergodic semi-Markov games with the expected average payoff criterion.},
author = {Połowczuk, Wojciech},
journal = {Applicationes Mathematicae},
keywords = {discounted criterion; Nash equilibrium; countable state space; nonzero-sum semi-Markov game; long run average reward criterion},
language = {eng},
number = {4},
pages = {395-402},
title = {Nonzero-sum semi-Markov games with countable state spaces},
url = {http://eudml.org/doc/219282},
volume = {27},
year = {2000},
}

TY - JOUR
AU - Połowczuk, Wojciech
TI - Nonzero-sum semi-Markov games with countable state spaces
JO - Applicationes Mathematicae
PY - 2000
VL - 27
IS - 4
SP - 395
EP - 402
AB - We consider nonzero-sum semi-Markov games with a countable state space and compact metric action spaces. We assume that the payoff, mean holding time and transition probability functions are continuous on the action spaces. The main results concern the existence of Nash equilibria for nonzero-sum discounted semi-Markov games and a class of ergodic semi-Markov games with the expected average payoff criterion.
LA - eng
KW - discounted criterion; Nash equilibrium; countable state space; nonzero-sum semi-Markov game; long run average reward criterion
UR - http://eudml.org/doc/219282
ER -

References

top
  1. [1] E. Altman, Non zero-sum stochastic games in admission, service and routing control in queueing systems, Queueing Systems Theory Appl. 23 (1996), 259-279. Zbl0877.90097
  2. [2] E. Altman and A. Hordijk, Zero-sum Markov games and worst-case optimal control of queueing systems, ibid. 21 (1995), 415-447. Zbl0859.90141
  3. [3] E. Altman, A. Hordijk and F. M. Spieksma, Contraction conditions for average and α-discount optimality in countable state Markov games with unbounded rewards, Math. Oper. Res. 22 (1997), 588-618. Zbl0887.90190
  4. [4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1979. Zbl0471.93002
  5. [5] V. S. Borkar and M. K. Ghosh, Denumerable state stochastic games with limiting average payoff, J. Optim. Theory Appl. 76 (1993), 539-560. Zbl0797.90128
  6. [6] A. Federgruen, On n-person stochastic games with denumerable state space, Adv. Appl. Probab. 10 (1978), 452-471. Zbl0411.93031
  7. [7] A. Federgruen and H. C. Tijms, The optimality equation in average cost denumerable state semi-Markov decision problems, recurrency conditions and algorithms, J. Appl. Probab. 15 (1978), 356-373. Zbl0386.90060
  8. [8] I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. Zbl0046.12103
  9. [9] A. Hordijk, Dynamic Programming and Markov Potential Theory, Math. Centrum, Amsterdam, 1977. 
  10. [10] M. Kurano, Semi-Markov decision processes and their applications in replacement models, J. Oper. Res. Soc. Japan 28 (1985), 18-30. Zbl0564.90090
  11. [11] A. K. Lal and S. Sinha, Zero-sum two-person semi-Markov games, J. Appl. Probab. 29 (1992), 56-72. Zbl0761.90111
  12. [12] S. P. Meyn and R. L. Tweedie, Computable bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 4 (1994), 981-1011. Zbl0812.60059
  13. [13] A. S. Nowak, Some remarks on equilibria in semi-Markov games, this issue, 385-394. Zbl1050.91010
  14. [14] A. S. Nowak, Sensitive equilibria for ergodic stochastic games with countable state spaces, Math. Methods Oper. Res. 50 (1999), 65-76. Zbl0963.91011
  15. [15] A. S. Nowak and K. Szajowski, Nonzero-sum stochastic games, Ann. Internat. Soc. Dynamic Games 4 (1999), 297-342. Zbl0940.91014
  16. [16] O. Passchier, The Theory of Markov Games and Queueing Control, Ph.D. thesis, Dept. Math. and Computer Sci., Leiden Univ., 1996. Zbl0909.90285
  17. [17] S. M. Ross, Applied Probability Models with Optimization Applications, Holden Day, San Francisco, 1970. Zbl0213.19101
  18. [18] H. Royden, Real Analysis, MacMillan, New York, 1968. Zbl0197.03501
  19. [19] L. I. Sennott, Average cost semi-Markov decision processes and the control of queueing systems, Probab. Engnrg. Inform. Sci. 3 (1989), 247-272. Zbl1134.60408
  20. [20] L. I. Sennott, Nonzero-sum stochastic games with unbounded costs: discounted and average cost cases, Z. Oper. Res. 40 (1994), 145-162. Zbl0826.90145

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.