Analytic functions

Saks, Stanisław; Zygmund, Antoni

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa-Wrocław), 1952

Abstract

top
CONTENTSPREFACE................................... IIIPREFACE TO THE ENGLISH EDITION................................... VIIINTRODUCTION. THEORY OF SETS§ 1. Fundamental definitions................................... 1§ 2. Denumerable sets................................... 3§ 3. Abstract topological space................................... 4§ 4. Closed and open sets................................... 6§ 5. Connected sets................................... 11§ 6. Compact sets................................... 13§ 7. Continuous transformations................................... 14§ 8. The plane................................... 17§ 9. Connected sets in the plane................................... 25§ 10. Square nets in the plane................................... 32§ 11. Real and complex functions................................... 36§ 12. Curves................................... 38§ 13. Cartesian product of sets................................... 40CHAPTER I. FUNCTIONS OF A COMPLEX VARIABLE§ 1. Continuous functions................................... 44§ 2. Uniformly and almost uniformly convergent sequences................................... 46§ 3. Normal families of functions................................... 49§ 4. Equi-continuous functions................................... 53§ 5. The total differential................................... 55§ 6. The derivative in the complex domain. Cauchy-Riemann equations................................... 57§ 7. The exponential function................................... 60§ 8. Trigonometric functions................................... 62§ 9. Argument................................... 68§ 10. Logarithm................................... 72§ 11. Branches of the logarithm, argument and power................................... 74§ 12. Angle between half-lines................................... 77§ 13. Tangent to a curve................................... 79§ 14. Homographic transformations................................... 80§ 15. Similarity transformations................................... 87§ 16. Regular curves................................... 91§ 17. Curvilinear integrals................................... 92§ 18. Examples................................. 95CHAPTER II. HOLOMORPHIC FUNCTIONS§ 1. The derivative in the complex domain................................... 98§ 2. Primitive function................................... 100§ 3. Differentiation of an integral with respect to a complex variable................................... 107§ 4. Cauchy’s theorem for a rectangle................................... 112§ 5. Cauchy’s formula for a system of rectangles................................... 112§ 6. Almost uniformly convergent sequences of holomorphic functions................................... 116§ 7. Theorem of Stieltjes-Osgood................................... 119§ 8. Morera’s theorem.................................... 120CHAPTER III. MEROMORPHIC FUNCTIONS§ 1. Power series in the circle of convergence................................... 125§ 2. Abel’s theorem................................... 128§ 3. Expansion of Log(1 - z)................................... 134§ 4. Laurent’s series. Annulus of convergence................................... 137§ 5. Laurent expansion in an annular neighbourhood................................... 140§ 6. Isolated singular points................................... 143§ 7. Regular, meromorphic, and rational functions................................... 145§ 8. Roots of a meromorphic function................................... 150§ 9. The logarithmic derivative................................... 153§ 10. Rouché’s theorem................................... 155§ 11. Hurwitz’s theorem................................... 158§ 12. Mappings defined by meromorphic functions................................... 161§ 13. Holomorphic functions of two variables................................... 165§ 14. Weierstrass’s preparation theorem................................... 167CHAPTER IV. ELEMENTARY GEOMETRICAL METHODS OF THE THEORY OF FUNCTIONS§ 1. Translation of poles................................... 171§ 2. Runge’s theorem. Cauchy’s theorem for a simply connected region................................... 176§ 3. Branch of the logarithm................................... 179§ 4. Jensen’s formula................................... 181§ 5. Increments of the logarithm and argument along a curve................................... 183§ 6. Index of a point with respect to a curve................................... 186§ 7. Theorem on residues................................... 189§ 8. The method of residues in the evaluation of definite integrals................................... 194§ 9. Cauchy’s theorem and formula for an annulus................................... 196§ 10. Analytical definition of a simply connected region................................... 204§ 11. Jordan’s theorem for a closed polygon................................... 206§ 12. Analytical definition of the degree of connectivity of a region................................... 209CHAPTER V. CONFORMAL TRANSFORMATIONS§ 1. Definition................................... 214§ 2. Homographic transformations................................... 216§ 3. Symmetry with respect to a circumference................................... 217§ 4. Blaschke’s factors................................... 220§ 5. Schwarz’s lemma................................... 222§ 6. Riemann’s theorem................................... 225§ 7. Radó’s theorem................................... 231§ 8. The Schwarz-Christoffel formulae................................... 233CHAPTER VI. ANALYTIC FUNCTION§ 1. Introductory remarks................................... 238§ 2. Analytic element................................... 239§ 3. Analytic continuation along a curve................................... 246§ 4. Analytic functions................................... 247§ 5. Inverse of an analytic function................................... 254§ 6. Analytic functions arbitrarily continuable in a region................................... 255§ 7. Theorem of Poincaré-Volterra................................... 258§ 8. An analytic function as an abstract space................................... 259§ 9. Analytic functions in an annular neighbourhood of a point................................... 261§ 10. Analytic functions in an annular neighbourhood as an abstract space................................... 264§ 11. Critical points................................... 265§ 12. Algebraic critical points................................... 267§ 13. Auxiliary theorems of algebra................................... 268§ 14. Functions with algebraic critical points................................... 271§ 15. Algebraic functions................................... 275§ 16. Riemann surfaces................................... 277CHAPTER VII. ENTIRE FUNCTIONS AND FUNCTIONS MEROMORPHIC IN THE ENTIRE OPEN PLANE§ 1. Infinite products................................... 286§ 2. Weierstrass’s theorem on the decomposition of entire functions into products................................... 295§ 3. Mittag-Leffler’s theorem on the decomposition of meromorphic functions into simple fractions................................... 301§ 4. Cauchy’s method of decomposing meromorphic functions into simple fractions................................... 305§ 5. Examples of expansions of entire and meromorphic functions................................... 309§ 6. Order of an entire function................................... 319§ 7. Dependence of the order of an entire function on the coefficients of its Taylor series expansion................................... 324§ 8. The exponent of convergence of the roots of an entire function................................... 327§ 9. Canonical product................................... 329§ 10. Hadamard’s theorem................................... 332§ 11. Borel’s theorem on the roots of entire functions................................... 338§ 12. The small theorem of Picard................................... 341§ 13. Schottky’s theorem. Montel’s theorem. Picard’s great theorem................................... 346§ 14. Landau’s theorem................................... 354CHAPTER VIII. ELLIPTIC FUNCTIONS§ 1. General remarks about periodic functions................................... 356§ 2. Expansion of a periodic function in a Fourier series................................... 360§ 3. General theorems on elliptic functions................................... 363§ 4. The function p(z)................................... 368§ 5. Differential equation of the function p(z)................................... 371§ 6. The function ζ(z) and σ(z)................................... 375§ 7. Construction of elliptic functions by means of the function σ(z)................................... 378§ 8. Expression of elliptic functions in terms of the functions ζ(z) and σ(z)................................... 380§ 9. Algebraic addition theorem for the function p(z)................................... 384§ 10. Algebraic relations between elliptic functions................................... 386§ 11. The modular function J(τ)................................... 387§ 12. Further properties of the function J(τ)................................... 392§ 13.Solution of the system of equations g 2 ( ω , ω ' ) = a , g 3 ( ω , ω ' ) = b ................................... 403§ 14. Elliptic integrals................................... 404CHAPTER IX. THE FUNCTIONS Γ(s) AND ζ(s) DIRICHLET SERIES§ 1. The function Γ(s)................................... 411§ 2. The function B(p,q)................................... 416§ 3. Hankel’s formulae for the function Γ(s)................................... 418§ 4. Stirling’s formula................................... 420§ 5. The function ζ(s) of Riemann................................... 424§ 6. Functional equation of the function ζ(s)................................... 428§ 7. Roots of the function ζ(s)................................... 429§ 8. Dirichlet series................................... 432INDEX................................... 441ERRATA................................... 446

How to cite

top

Saks, Stanisław, and Zygmund, Antoni. Analytic functions. Warszawa-Wrocław: Instytut Matematyczny Polskiej Akademi Nauk, 1952. <http://eudml.org/doc/219298>.

@book{Saks1952,
abstract = {CONTENTSPREFACE................................... IIIPREFACE TO THE ENGLISH EDITION................................... VIIINTRODUCTION. THEORY OF SETS§ 1. Fundamental definitions................................... 1§ 2. Denumerable sets................................... 3§ 3. Abstract topological space................................... 4§ 4. Closed and open sets................................... 6§ 5. Connected sets................................... 11§ 6. Compact sets................................... 13§ 7. Continuous transformations................................... 14§ 8. The plane................................... 17§ 9. Connected sets in the plane................................... 25§ 10. Square nets in the plane................................... 32§ 11. Real and complex functions................................... 36§ 12. Curves................................... 38§ 13. Cartesian product of sets................................... 40CHAPTER I. FUNCTIONS OF A COMPLEX VARIABLE§ 1. Continuous functions................................... 44§ 2. Uniformly and almost uniformly convergent sequences................................... 46§ 3. Normal families of functions................................... 49§ 4. Equi-continuous functions................................... 53§ 5. The total differential................................... 55§ 6. The derivative in the complex domain. Cauchy-Riemann equations................................... 57§ 7. The exponential function................................... 60§ 8. Trigonometric functions................................... 62§ 9. Argument................................... 68§ 10. Logarithm................................... 72§ 11. Branches of the logarithm, argument and power................................... 74§ 12. Angle between half-lines................................... 77§ 13. Tangent to a curve................................... 79§ 14. Homographic transformations................................... 80§ 15. Similarity transformations................................... 87§ 16. Regular curves................................... 91§ 17. Curvilinear integrals................................... 92§ 18. Examples................................. 95CHAPTER II. HOLOMORPHIC FUNCTIONS§ 1. The derivative in the complex domain................................... 98§ 2. Primitive function................................... 100§ 3. Differentiation of an integral with respect to a complex variable................................... 107§ 4. Cauchy’s theorem for a rectangle................................... 112§ 5. Cauchy’s formula for a system of rectangles................................... 112§ 6. Almost uniformly convergent sequences of holomorphic functions................................... 116§ 7. Theorem of Stieltjes-Osgood................................... 119§ 8. Morera’s theorem.................................... 120CHAPTER III. MEROMORPHIC FUNCTIONS§ 1. Power series in the circle of convergence................................... 125§ 2. Abel’s theorem................................... 128§ 3. Expansion of Log(1 - z)................................... 134§ 4. Laurent’s series. Annulus of convergence................................... 137§ 5. Laurent expansion in an annular neighbourhood................................... 140§ 6. Isolated singular points................................... 143§ 7. Regular, meromorphic, and rational functions................................... 145§ 8. Roots of a meromorphic function................................... 150§ 9. The logarithmic derivative................................... 153§ 10. Rouché’s theorem................................... 155§ 11. Hurwitz’s theorem................................... 158§ 12. Mappings defined by meromorphic functions................................... 161§ 13. Holomorphic functions of two variables................................... 165§ 14. Weierstrass’s preparation theorem................................... 167CHAPTER IV. ELEMENTARY GEOMETRICAL METHODS OF THE THEORY OF FUNCTIONS§ 1. Translation of poles................................... 171§ 2. Runge’s theorem. Cauchy’s theorem for a simply connected region................................... 176§ 3. Branch of the logarithm................................... 179§ 4. Jensen’s formula................................... 181§ 5. Increments of the logarithm and argument along a curve................................... 183§ 6. Index of a point with respect to a curve................................... 186§ 7. Theorem on residues................................... 189§ 8. The method of residues in the evaluation of definite integrals................................... 194§ 9. Cauchy’s theorem and formula for an annulus................................... 196§ 10. Analytical definition of a simply connected region................................... 204§ 11. Jordan’s theorem for a closed polygon................................... 206§ 12. Analytical definition of the degree of connectivity of a region................................... 209CHAPTER V. CONFORMAL TRANSFORMATIONS§ 1. Definition................................... 214§ 2. Homographic transformations................................... 216§ 3. Symmetry with respect to a circumference................................... 217§ 4. Blaschke’s factors................................... 220§ 5. Schwarz’s lemma................................... 222§ 6. Riemann’s theorem................................... 225§ 7. Radó’s theorem................................... 231§ 8. The Schwarz-Christoffel formulae................................... 233CHAPTER VI. ANALYTIC FUNCTION§ 1. Introductory remarks................................... 238§ 2. Analytic element................................... 239§ 3. Analytic continuation along a curve................................... 246§ 4. Analytic functions................................... 247§ 5. Inverse of an analytic function................................... 254§ 6. Analytic functions arbitrarily continuable in a region................................... 255§ 7. Theorem of Poincaré-Volterra................................... 258§ 8. An analytic function as an abstract space................................... 259§ 9. Analytic functions in an annular neighbourhood of a point................................... 261§ 10. Analytic functions in an annular neighbourhood as an abstract space................................... 264§ 11. Critical points................................... 265§ 12. Algebraic critical points................................... 267§ 13. Auxiliary theorems of algebra................................... 268§ 14. Functions with algebraic critical points................................... 271§ 15. Algebraic functions................................... 275§ 16. Riemann surfaces................................... 277CHAPTER VII. ENTIRE FUNCTIONS AND FUNCTIONS MEROMORPHIC IN THE ENTIRE OPEN PLANE§ 1. Infinite products................................... 286§ 2. Weierstrass’s theorem on the decomposition of entire functions into products................................... 295§ 3. Mittag-Leffler’s theorem on the decomposition of meromorphic functions into simple fractions................................... 301§ 4. Cauchy’s method of decomposing meromorphic functions into simple fractions................................... 305§ 5. Examples of expansions of entire and meromorphic functions................................... 309§ 6. Order of an entire function................................... 319§ 7. Dependence of the order of an entire function on the coefficients of its Taylor series expansion................................... 324§ 8. The exponent of convergence of the roots of an entire function................................... 327§ 9. Canonical product................................... 329§ 10. Hadamard’s theorem................................... 332§ 11. Borel’s theorem on the roots of entire functions................................... 338§ 12. The small theorem of Picard................................... 341§ 13. Schottky’s theorem. Montel’s theorem. Picard’s great theorem................................... 346§ 14. Landau’s theorem................................... 354CHAPTER VIII. ELLIPTIC FUNCTIONS§ 1. General remarks about periodic functions................................... 356§ 2. Expansion of a periodic function in a Fourier series................................... 360§ 3. General theorems on elliptic functions................................... 363§ 4. The function p(z)................................... 368§ 5. Differential equation of the function p(z)................................... 371§ 6. The function ζ(z) and σ(z)................................... 375§ 7. Construction of elliptic functions by means of the function σ(z)................................... 378§ 8. Expression of elliptic functions in terms of the functions ζ(z) and σ(z)................................... 380§ 9. Algebraic addition theorem for the function p(z)................................... 384§ 10. Algebraic relations between elliptic functions................................... 386§ 11. The modular function J(τ)................................... 387§ 12. Further properties of the function J(τ)................................... 392§ 13.Solution of the system of equations $g_2(ω,ω^\{\prime \})=a$, $g_3(ω,ω^\{\prime \})=b$................................... 403§ 14. Elliptic integrals................................... 404CHAPTER IX. THE FUNCTIONS Γ(s) AND ζ(s) DIRICHLET SERIES§ 1. The function Γ(s)................................... 411§ 2. The function B(p,q)................................... 416§ 3. Hankel’s formulae for the function Γ(s)................................... 418§ 4. Stirling’s formula................................... 420§ 5. The function ζ(s) of Riemann................................... 424§ 6. Functional equation of the function ζ(s)................................... 428§ 7. Roots of the function ζ(s)................................... 429§ 8. Dirichlet series................................... 432INDEX................................... 441ERRATA................................... 446},
author = {Saks, Stanisław, Zygmund, Antoni},
keywords = {complex functions},
language = {eng},
location = {Warszawa-Wrocław},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Analytic functions},
url = {http://eudml.org/doc/219298},
year = {1952},
}

TY - BOOK
AU - Saks, Stanisław
AU - Zygmund, Antoni
TI - Analytic functions
PY - 1952
CY - Warszawa-Wrocław
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPREFACE................................... IIIPREFACE TO THE ENGLISH EDITION................................... VIIINTRODUCTION. THEORY OF SETS§ 1. Fundamental definitions................................... 1§ 2. Denumerable sets................................... 3§ 3. Abstract topological space................................... 4§ 4. Closed and open sets................................... 6§ 5. Connected sets................................... 11§ 6. Compact sets................................... 13§ 7. Continuous transformations................................... 14§ 8. The plane................................... 17§ 9. Connected sets in the plane................................... 25§ 10. Square nets in the plane................................... 32§ 11. Real and complex functions................................... 36§ 12. Curves................................... 38§ 13. Cartesian product of sets................................... 40CHAPTER I. FUNCTIONS OF A COMPLEX VARIABLE§ 1. Continuous functions................................... 44§ 2. Uniformly and almost uniformly convergent sequences................................... 46§ 3. Normal families of functions................................... 49§ 4. Equi-continuous functions................................... 53§ 5. The total differential................................... 55§ 6. The derivative in the complex domain. Cauchy-Riemann equations................................... 57§ 7. The exponential function................................... 60§ 8. Trigonometric functions................................... 62§ 9. Argument................................... 68§ 10. Logarithm................................... 72§ 11. Branches of the logarithm, argument and power................................... 74§ 12. Angle between half-lines................................... 77§ 13. Tangent to a curve................................... 79§ 14. Homographic transformations................................... 80§ 15. Similarity transformations................................... 87§ 16. Regular curves................................... 91§ 17. Curvilinear integrals................................... 92§ 18. Examples................................. 95CHAPTER II. HOLOMORPHIC FUNCTIONS§ 1. The derivative in the complex domain................................... 98§ 2. Primitive function................................... 100§ 3. Differentiation of an integral with respect to a complex variable................................... 107§ 4. Cauchy’s theorem for a rectangle................................... 112§ 5. Cauchy’s formula for a system of rectangles................................... 112§ 6. Almost uniformly convergent sequences of holomorphic functions................................... 116§ 7. Theorem of Stieltjes-Osgood................................... 119§ 8. Morera’s theorem.................................... 120CHAPTER III. MEROMORPHIC FUNCTIONS§ 1. Power series in the circle of convergence................................... 125§ 2. Abel’s theorem................................... 128§ 3. Expansion of Log(1 - z)................................... 134§ 4. Laurent’s series. Annulus of convergence................................... 137§ 5. Laurent expansion in an annular neighbourhood................................... 140§ 6. Isolated singular points................................... 143§ 7. Regular, meromorphic, and rational functions................................... 145§ 8. Roots of a meromorphic function................................... 150§ 9. The logarithmic derivative................................... 153§ 10. Rouché’s theorem................................... 155§ 11. Hurwitz’s theorem................................... 158§ 12. Mappings defined by meromorphic functions................................... 161§ 13. Holomorphic functions of two variables................................... 165§ 14. Weierstrass’s preparation theorem................................... 167CHAPTER IV. ELEMENTARY GEOMETRICAL METHODS OF THE THEORY OF FUNCTIONS§ 1. Translation of poles................................... 171§ 2. Runge’s theorem. Cauchy’s theorem for a simply connected region................................... 176§ 3. Branch of the logarithm................................... 179§ 4. Jensen’s formula................................... 181§ 5. Increments of the logarithm and argument along a curve................................... 183§ 6. Index of a point with respect to a curve................................... 186§ 7. Theorem on residues................................... 189§ 8. The method of residues in the evaluation of definite integrals................................... 194§ 9. Cauchy’s theorem and formula for an annulus................................... 196§ 10. Analytical definition of a simply connected region................................... 204§ 11. Jordan’s theorem for a closed polygon................................... 206§ 12. Analytical definition of the degree of connectivity of a region................................... 209CHAPTER V. CONFORMAL TRANSFORMATIONS§ 1. Definition................................... 214§ 2. Homographic transformations................................... 216§ 3. Symmetry with respect to a circumference................................... 217§ 4. Blaschke’s factors................................... 220§ 5. Schwarz’s lemma................................... 222§ 6. Riemann’s theorem................................... 225§ 7. Radó’s theorem................................... 231§ 8. The Schwarz-Christoffel formulae................................... 233CHAPTER VI. ANALYTIC FUNCTION§ 1. Introductory remarks................................... 238§ 2. Analytic element................................... 239§ 3. Analytic continuation along a curve................................... 246§ 4. Analytic functions................................... 247§ 5. Inverse of an analytic function................................... 254§ 6. Analytic functions arbitrarily continuable in a region................................... 255§ 7. Theorem of Poincaré-Volterra................................... 258§ 8. An analytic function as an abstract space................................... 259§ 9. Analytic functions in an annular neighbourhood of a point................................... 261§ 10. Analytic functions in an annular neighbourhood as an abstract space................................... 264§ 11. Critical points................................... 265§ 12. Algebraic critical points................................... 267§ 13. Auxiliary theorems of algebra................................... 268§ 14. Functions with algebraic critical points................................... 271§ 15. Algebraic functions................................... 275§ 16. Riemann surfaces................................... 277CHAPTER VII. ENTIRE FUNCTIONS AND FUNCTIONS MEROMORPHIC IN THE ENTIRE OPEN PLANE§ 1. Infinite products................................... 286§ 2. Weierstrass’s theorem on the decomposition of entire functions into products................................... 295§ 3. Mittag-Leffler’s theorem on the decomposition of meromorphic functions into simple fractions................................... 301§ 4. Cauchy’s method of decomposing meromorphic functions into simple fractions................................... 305§ 5. Examples of expansions of entire and meromorphic functions................................... 309§ 6. Order of an entire function................................... 319§ 7. Dependence of the order of an entire function on the coefficients of its Taylor series expansion................................... 324§ 8. The exponent of convergence of the roots of an entire function................................... 327§ 9. Canonical product................................... 329§ 10. Hadamard’s theorem................................... 332§ 11. Borel’s theorem on the roots of entire functions................................... 338§ 12. The small theorem of Picard................................... 341§ 13. Schottky’s theorem. Montel’s theorem. Picard’s great theorem................................... 346§ 14. Landau’s theorem................................... 354CHAPTER VIII. ELLIPTIC FUNCTIONS§ 1. General remarks about periodic functions................................... 356§ 2. Expansion of a periodic function in a Fourier series................................... 360§ 3. General theorems on elliptic functions................................... 363§ 4. The function p(z)................................... 368§ 5. Differential equation of the function p(z)................................... 371§ 6. The function ζ(z) and σ(z)................................... 375§ 7. Construction of elliptic functions by means of the function σ(z)................................... 378§ 8. Expression of elliptic functions in terms of the functions ζ(z) and σ(z)................................... 380§ 9. Algebraic addition theorem for the function p(z)................................... 384§ 10. Algebraic relations between elliptic functions................................... 386§ 11. The modular function J(τ)................................... 387§ 12. Further properties of the function J(τ)................................... 392§ 13.Solution of the system of equations $g_2(ω,ω^{\prime })=a$, $g_3(ω,ω^{\prime })=b$................................... 403§ 14. Elliptic integrals................................... 404CHAPTER IX. THE FUNCTIONS Γ(s) AND ζ(s) DIRICHLET SERIES§ 1. The function Γ(s)................................... 411§ 2. The function B(p,q)................................... 416§ 3. Hankel’s formulae for the function Γ(s)................................... 418§ 4. Stirling’s formula................................... 420§ 5. The function ζ(s) of Riemann................................... 424§ 6. Functional equation of the function ζ(s)................................... 428§ 7. Roots of the function ζ(s)................................... 429§ 8. Dirichlet series................................... 432INDEX................................... 441ERRATA................................... 446
LA - eng
KW - complex functions
UR - http://eudml.org/doc/219298
ER -

Citations in EuDML Documents

top
  1. Steven B. Bank, A note on a theorem of C. L. Siegel concerning Bessel's equation
  2. Ilja Černý, A simple proof of Cauchy theorem
  3. Ilja Černý, Some methodical remarks concerning the flow around arbitrary profiles
  4. Valter Šeda, O pojme inverznej analytickej funkcie
  5. Steven Bank, A note on algebraic differential equations whose coefficients are entire functions of finite order
  6. Valter Šeda, Несколько теорем о линейном дифференциальном уравнении второго порядка типа Якоби в комплексной области
  7. Steven B. Bank, A general theorem concerning the growth of solutions of first-order algebraic differential equations
  8. Valter Šeda, Применение главной теоремы конформного отображения в теории линейных дифференциальных уравнений 2-ого порядка
  9. Jan Čerych, Pervasive algebras on planar compacts
  10. Jiří Veselý, O jedné smíšené okrajové úloze teorie analytických funkcí

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.