A note on a theorem of C. L. Siegel concerning Bessel's equation

Steven B. Bank

Compositio Mathematica (1982)

  • Volume: 46, Issue: 1, page 15-32
  • ISSN: 0010-437X

How to cite

top

Bank, Steven B.. "A note on a theorem of C. L. Siegel concerning Bessel's equation." Compositio Mathematica 46.1 (1982): 15-32. <http://eudml.org/doc/89545>.

@article{Bank1982,
author = {Bank, Steven B.},
journal = {Compositio Mathematica},
keywords = {Bessel equation; Siegel's theorem; meromorphic functions on the plane},
language = {eng},
number = {1},
pages = {15-32},
publisher = {Martinus Nijhoff Publishers},
title = {A note on a theorem of C. L. Siegel concerning Bessel's equation},
url = {http://eudml.org/doc/89545},
volume = {46},
year = {1982},
}

TY - JOUR
AU - Bank, Steven B.
TI - A note on a theorem of C. L. Siegel concerning Bessel's equation
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 46
IS - 1
SP - 15
EP - 32
LA - eng
KW - Bessel equation; Siegel's theorem; meromorphic functions on the plane
UR - http://eudml.org/doc/89545
ER -

References

top
  1. [1] L. Bieberbach: Theorie der Gewöhnlichen Differentialgleichungen. Grund. der Math., Band 66, Second Edition, Springer-Verlag, Berlin, 1965. Zbl0124.04603MR176133
  2. [2] W. Hayman: Meromorphic Functions. Oxford Math. Monographs, Clarendon Press, Oxford, 1964. Zbl0115.06203MR164038
  3. [3] S. Hellerstein and L. Rubel: Subfields that are algebraically closed in the field of all meromorphic functions. J. Analyse Math.12 (1964) 105-111. Zbl0129.29301MR166359
  4. [4] J. Miles: Quotient representations of meromorphic functions. J. Analyse Math.25 (1972) 371-388. Zbl0247.30019MR350001
  5. [5] R. Nevanlinna: Le Théorème de Picard-Borel et la Theorie des Fonctions Méromorphes. Gauthier-Villars, Paris, 1929. Zbl0357.30019JFM55.0773.03
  6. [6] S. Saks and A. Zygmund: Analytic Functions. Monografie Mat.(Engl. Transl.), Tom 28, Warsaw, 1952. Zbl0048.30803MR55432
  7. [7] C.L. Siegel: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. der Wissensch., Phys.-Math. K1. 1929, Nr. 1, 58 pp. JFM56.0180.05
  8. [8] C.L. Siegel; Transcendental Numbers. Annals of Math. Studies, No. 16, Princeton University Press, Princeton, 1949. Zbl0039.04402MR32684
  9. [9] E. Titchmarsh: The Theory of Functions. Second Edition, Oxford University Press, Oxford, 1939. Zbl0336.30001MR882550JFM65.0302.01
  10. [10] F. Tricomi: Repertorium der Theorie der Differentialgleichungen. Springer-Verlag, Berlin, 1968. Zbl0159.13601MR232978
  11. [11] G. Valiron: Lectures on the General Theory of Integral Functions. Chelsea Publ. Co., New York, 1949. 
  12. [12] G. Valiron: Fonctions Analytiques, "Euclid". Presses Universitaires de France, Paris, 1964. Zbl0055.06702MR61658
  13. [13] H. Wittich: Neuere Untersuchungen über Eindeutige Analytische Funktionen. Ergebn. der Math., No. 8, Springer-Verlag, Berlin, 1955. Zbl0067.05501MR77620

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.