# On generalized differential equations in Banach spaces

- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1991

## Access Full Book

top## Abstract

top## How to cite

topTadeusz Poreda. On generalized differential equations in Banach spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1991. <http://eudml.org/doc/219349>.

@book{TadeuszPoreda1991,

abstract = {CONTENTSIntroduction . . . . . . . . 5I. Fundamental problems for generalized differential equations at nonsingular points§1. Introduction . . . . . . . . 6§2. Cauchy problem at nonsingular points for generalized differential equations of the first order . . . . . . . . 6§3. Dependence of solution on parameters and initial conditions . . . . . . . . 8II. Total solutions of generalized linear differential equations§1. Introduction . . . . . . . . 11§2. Form of solutions of generalized linear differential equations . . . . . . . . 11§3. Stability of generalized linear differential equations . . . . . . . . 15III. Fundamental problems for generalized differential equations at singular points§1. Introduction . . . . . . . . 19§2. Initial conditions at singular points and dependence of solutions upon initial conditions and parameters . . . . . . . . 19§3. Form of solutions in a vicinity of a singular point . . . . . . . . 26IV. Existence and form of solutions of generalized linear differential equations connected with geometrical properties of holomorphic mappings§1. Introduction . . . . . . . . 29§2. Holomorphic solutions of generalized differential equation connected with spiral-like mappings . . . . . . . . 31§3. Existence and form of solutions of generalized differential equations which define close-to-starlike mappings . . . . . . . . 37§4. Univalent subordination chains and solutions of a generalized equation of Löwner . . . . . . . . 39V. The generalized form of the Frobenius theorem§1. Introduction . . . . . . . . 44§2. A necessary condition and a sufficient condition for existence and uniqueness . . . . . . . . 45§3. The generalized Frobenius equation and its integrability conditions in Euclidean spaces . . . . . . . . 47References . . . . . . . . 491991 Mathematics Subject Classification: Primary 35F99, 34G99.},

author = {Tadeusz Poreda},

keywords = {stability; holomorphic solutions; Frobenius conditions},

language = {eng},

location = {Warszawa},

publisher = {Instytut Matematyczny Polskiej Akademi Nauk},

title = {On generalized differential equations in Banach spaces},

url = {http://eudml.org/doc/219349},

year = {1991},

}

TY - BOOK

AU - Tadeusz Poreda

TI - On generalized differential equations in Banach spaces

PY - 1991

CY - Warszawa

PB - Instytut Matematyczny Polskiej Akademi Nauk

AB - CONTENTSIntroduction . . . . . . . . 5I. Fundamental problems for generalized differential equations at nonsingular points§1. Introduction . . . . . . . . 6§2. Cauchy problem at nonsingular points for generalized differential equations of the first order . . . . . . . . 6§3. Dependence of solution on parameters and initial conditions . . . . . . . . 8II. Total solutions of generalized linear differential equations§1. Introduction . . . . . . . . 11§2. Form of solutions of generalized linear differential equations . . . . . . . . 11§3. Stability of generalized linear differential equations . . . . . . . . 15III. Fundamental problems for generalized differential equations at singular points§1. Introduction . . . . . . . . 19§2. Initial conditions at singular points and dependence of solutions upon initial conditions and parameters . . . . . . . . 19§3. Form of solutions in a vicinity of a singular point . . . . . . . . 26IV. Existence and form of solutions of generalized linear differential equations connected with geometrical properties of holomorphic mappings§1. Introduction . . . . . . . . 29§2. Holomorphic solutions of generalized differential equation connected with spiral-like mappings . . . . . . . . 31§3. Existence and form of solutions of generalized differential equations which define close-to-starlike mappings . . . . . . . . 37§4. Univalent subordination chains and solutions of a generalized equation of Löwner . . . . . . . . 39V. The generalized form of the Frobenius theorem§1. Introduction . . . . . . . . 44§2. A necessary condition and a sufficient condition for existence and uniqueness . . . . . . . . 45§3. The generalized Frobenius equation and its integrability conditions in Euclidean spaces . . . . . . . . 47References . . . . . . . . 491991 Mathematics Subject Classification: Primary 35F99, 34G99.

LA - eng

KW - stability; holomorphic solutions; Frobenius conditions

UR - http://eudml.org/doc/219349

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.