On generalized differential equations in Banach spaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1991
Access Full Book
topAbstract
topHow to cite
topTadeusz Poreda. On generalized differential equations in Banach spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1991. <http://eudml.org/doc/219349>.
@book{TadeuszPoreda1991,
abstract = {CONTENTSIntroduction . . . . . . . . 5I. Fundamental problems for generalized differential equations at nonsingular points§1. Introduction . . . . . . . . 6§2. Cauchy problem at nonsingular points for generalized differential equations of the first order . . . . . . . . 6§3. Dependence of solution on parameters and initial conditions . . . . . . . . 8II. Total solutions of generalized linear differential equations§1. Introduction . . . . . . . . 11§2. Form of solutions of generalized linear differential equations . . . . . . . . 11§3. Stability of generalized linear differential equations . . . . . . . . 15III. Fundamental problems for generalized differential equations at singular points§1. Introduction . . . . . . . . 19§2. Initial conditions at singular points and dependence of solutions upon initial conditions and parameters . . . . . . . . 19§3. Form of solutions in a vicinity of a singular point . . . . . . . . 26IV. Existence and form of solutions of generalized linear differential equations connected with geometrical properties of holomorphic mappings§1. Introduction . . . . . . . . 29§2. Holomorphic solutions of generalized differential equation connected with spiral-like mappings . . . . . . . . 31§3. Existence and form of solutions of generalized differential equations which define close-to-starlike mappings . . . . . . . . 37§4. Univalent subordination chains and solutions of a generalized equation of Löwner . . . . . . . . 39V. The generalized form of the Frobenius theorem§1. Introduction . . . . . . . . 44§2. A necessary condition and a sufficient condition for existence and uniqueness . . . . . . . . 45§3. The generalized Frobenius equation and its integrability conditions in Euclidean spaces . . . . . . . . 47References . . . . . . . . 491991 Mathematics Subject Classification: Primary 35F99, 34G99.},
author = {Tadeusz Poreda},
keywords = {stability; holomorphic solutions; Frobenius conditions},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On generalized differential equations in Banach spaces},
url = {http://eudml.org/doc/219349},
year = {1991},
}
TY - BOOK
AU - Tadeusz Poreda
TI - On generalized differential equations in Banach spaces
PY - 1991
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction . . . . . . . . 5I. Fundamental problems for generalized differential equations at nonsingular points§1. Introduction . . . . . . . . 6§2. Cauchy problem at nonsingular points for generalized differential equations of the first order . . . . . . . . 6§3. Dependence of solution on parameters and initial conditions . . . . . . . . 8II. Total solutions of generalized linear differential equations§1. Introduction . . . . . . . . 11§2. Form of solutions of generalized linear differential equations . . . . . . . . 11§3. Stability of generalized linear differential equations . . . . . . . . 15III. Fundamental problems for generalized differential equations at singular points§1. Introduction . . . . . . . . 19§2. Initial conditions at singular points and dependence of solutions upon initial conditions and parameters . . . . . . . . 19§3. Form of solutions in a vicinity of a singular point . . . . . . . . 26IV. Existence and form of solutions of generalized linear differential equations connected with geometrical properties of holomorphic mappings§1. Introduction . . . . . . . . 29§2. Holomorphic solutions of generalized differential equation connected with spiral-like mappings . . . . . . . . 31§3. Existence and form of solutions of generalized differential equations which define close-to-starlike mappings . . . . . . . . 37§4. Univalent subordination chains and solutions of a generalized equation of Löwner . . . . . . . . 39V. The generalized form of the Frobenius theorem§1. Introduction . . . . . . . . 44§2. A necessary condition and a sufficient condition for existence and uniqueness . . . . . . . . 45§3. The generalized Frobenius equation and its integrability conditions in Euclidean spaces . . . . . . . . 47References . . . . . . . . 491991 Mathematics Subject Classification: Primary 35F99, 34G99.
LA - eng
KW - stability; holomorphic solutions; Frobenius conditions
UR - http://eudml.org/doc/219349
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.