Holomorphic Evolution: Metamorphosis of the Loewner Equations

Filippo Bracci

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 1, page 137-165
  • ISSN: 0392-4041

How to cite

top

Bracci, Filippo. "Holomorphic Evolution: Metamorphosis of the Loewner Equations." Bollettino dell'Unione Matematica Italiana 6.1 (2013): 137-165. <http://eudml.org/doc/294028>.

@article{Bracci2013,
author = {Bracci, Filippo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {137-165},
publisher = {Unione Matematica Italiana},
title = {Holomorphic Evolution: Metamorphosis of the Loewner Equations},
url = {http://eudml.org/doc/294028},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Bracci, Filippo
TI - Holomorphic Evolution: Metamorphosis of the Loewner Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/2//
PB - Unione Matematica Italiana
VL - 6
IS - 1
SP - 137
EP - 165
LA - eng
UR - http://eudml.org/doc/294028
ER -

References

top
  1. ABATE, M., Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, Cosenza, 1989. Zbl0747.32002MR1098711
  2. ABATE, M. - BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., The evolution of Loewner's differential equationsNewsletter European Math. Soc.78 (December 2010), 31-38. Zbl1230.30003MR2768999
  3. AHARONOV, D. - REICH, S. - SHOIKHET, D., Flow invariance conditions for holomorphic mappings in Banach spaces. Math. Proc. R. Ir. Acad.99A, no. 1 (1999), 93-104. Zbl0947.46033MR1883068
  4. AROSIO, L., Resonances in Loewner equations, Adv. Math.227 (2011), 1413-1435. Zbl1256.32022MR2799800DOI10.1016/j.aim.2011.03.010
  5. AROSIO, L. - BRACCI, F. - HAMADA, H. - KOHR, G., Loewner's theory on complex manifolds, J. Anal. Math., to appear. 
  6. AROSIO, L. - BRACCI, F., Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds, Anal. Math. Phys., 1, 4 (2011), 337-350. Zbl1254.32037MR2887104DOI10.1007/s13324-011-0020-3
  7. AROSIO, L., Basins of attraction in Loewner equations, Ann. Acad. Sci. Fenn. Math., to appear. Zbl1281.32015MR2987086DOI10.5186/aasfm.2012.3742
  8. BERKSON, E. - PORTA, H., Semigroups of holomorphic functions and composition operators, Michigan Math. J.25 (1978), 101-115. Zbl0382.47017MR480965
  9. BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Pluripotential theory, semigroups and boundary behavior of infinitesimal generators in strongly convex domains, J. Eur. Math. Soc.12 (2010), 23-53. Zbl1185.32010MR2578602DOI10.4171/JEMS/188
  10. BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Evolution Families and the Loewner Equation I: the unit disc, J. Reine Angew Math. (Crelle's Journal), 672, (2012), 1-37. Zbl1267.30025MR2995431DOI10.1515/crelle.2011.167
  11. BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Evolution Families and the Loewner Equation II: complex hyperbolic manifolds, Math. Ann.344 (2009), 947- 962. Zbl1198.32010MR2507634DOI10.1007/s00208-009-0340-x
  12. BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Semigroups versus evolution families in the Loewner theory. J. Anal. Math, 115, 1, (2011), 273-292. Zbl1310.30007MR2855040DOI10.1007/s11854-011-0030-y
  13. CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Loewner chains in the unit disc, Rev. Mat. Iberoamericana, 26, 3 (2010), 975-1012. Zbl1209.30011MR2789373DOI10.4171/RMI/624
  14. CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Loewner Theory in annulus I: evolution families and differential equations. Trans. Amer. Math. Soc., to appear. Zbl1281.30007MR3020107DOI10.1090/S0002-9947-2012-05718-7
  15. CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Loewner theory in annulus II: Loewner chains. Anal. Math. Phys., 1, 4, (2011), 351-385. Zbl1257.30004MR2887105DOI10.1007/s13324-011-0016-z
  16. CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Local duality in Loewner equations, in preparation. Zbl1316.30025
  17. DE BRANGES, L., A proof of the Bieberbach conjecture, Acta Math.154 (1985), 137-152. Zbl0573.30014MR772434DOI10.1007/BF02392821
  18. DUREN, P. L., Univalent Functions, Springer, New York, 1983. MR708494
  19. EARLE, C. - EPSTEIN, A., Quasiconformal variation of slit domains. Proc. Amer. math. Soc.129 (2001), 3363-3372. Zbl0977.30008MR1845014DOI10.1090/S0002-9939-01-05991-3
  20. FITZGERALD, C. H. - POMMERENKE, CH., The de Branges theorem on univalent functions. Trans. Amer. Math. Soc.290, no. 2 (1985), 683-690. Zbl0574.30018MR792819DOI10.2307/2000306
  21. FORNÆSS, J. E. - SIBONY, N., Increasing sequences of complex manifolds. Math. Ann.255 (1981), 351-360. Zbl0438.32012MR615855DOI10.1007/BF01450708
  22. GRAHAM, I. - HAMADA, H. - KOHR, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54 (2002), 324-351. Zbl1004.32007MR1892999DOI10.4153/CJM-2002-011-2
  23. GRAHAM, I. - HAMADA, H. - KOHR, G. - KOHR, M., Asymptotically spirallike mappings in several complex variables, J. Anal. Math., 105 (2008), 267-302. Zbl1148.32009MR2438427DOI10.1007/s11854-008-0037-1
  24. GRAHAM, I. - KOHR, G., Geometric function theory in one and higher dimensions, Marcel Dekker Inc., New York, 2003. Zbl1042.30001MR2017933DOI10.1201/9780203911624
  25. GRAHAM, I. - KOHR, G. - PFALTZGRAFF, J. A., The general solution of the Loewner differential equation on the unit ball in n , Contemporary Math. (AMS), 382 (2005), 191-203. Zbl1089.32008MR2175888DOI10.1090/conm/382/07059
  26. HAMADA, H. - KOHR, G. - MUIR, J. R., Extension of L d -Loewner chains to higher dimensions. Preprint, 2011. MR3095158DOI10.1007/s11854-013-0024-z
  27. KAGER, W. - NIENHUIS, B. - KADANOFF, L. P., Exact solutions for Loewner evolutions. J. Statist. Phys.115, 3-4 (2004), 805-822. Zbl1056.30005MR2054162DOI10.1023/B:JOSS.0000022380.93241.24
  28. KOBAYASHI, S., Hyperbolic complex spaces. Springer-VerlagBerlinHeidelberg, 1998 Zbl0917.32019MR1635983DOI10.1007/978-3-662-03582-5
  29. KUFAREV, P. P., On one-parameter families of analytic functions, (in Russian) Mat. Sb.13 (1943), 87-118. MR13800
  30. KUFAREV, P. P., On integrals of a very simple differential equation with movable polar singularity in the right hand side (in Russian) Tomsk. Gos. Univ. Uchen. Zap. no. 1 (1946), 35-48. MR30604
  31. KUFAREV, P. P., A remark on the integrals of the Loewner eqaution, Dokl. Akad. Nauk. SSSR, 57 (1947), 655-656 (in Russian). MR23907
  32. KUFAREV, P. P. - SOBOLEV, V. V. - SPORYSHEVA, L. V., A certain method of investigation of extremal problems for functions that are univalent in the half-plane, Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat.200 (1968), 142-164. MR257336
  33. LAWLER, G. F., Conformally invariant processes in the plane, Mathematical surveyes and monograph, vol. 114, Amer. Math. Soc. (2005). Zbl1074.60002MR2129588
  34. LAWLER, G. F. - SCHRAMM, O. - WERNER, W., Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math.187 (2001), 237-273. Zbl1005.60097MR1879850DOI10.1007/BF02392618
  35. LAWLER, G. F. - SCHRAMM, O. - WERNER, W., Values of Brownian intersection exponents. II. Plane exponents, Acta Math.187 (2001), 275-308. Zbl0993.60083MR1879851DOI10.1007/BF02392619
  36. LOEWNER, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann.89 (1923), 103-121. MR1512136DOI10.1007/BF01448091
  37. LIND, J. R., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math.30, 1 (2005), 143-158. Zbl1069.30012MR2140303
  38. MARSHALL, D. E. - ROHDE, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc.18 (2005), 763-778. Zbl1078.30005MR2163382DOI10.1090/S0894-0347-05-00492-3
  39. PFALTZGRAFF, J. A., Subordination chains and univalence of holomorphic mappings in n , Math. Ann., 210 (1974), 55-68. Zbl0275.32012MR352510DOI10.1007/BF01344545
  40. PFALTZGRAFF, J. A., Subordination chains and quasiconformal extension of holomorphic maps in n , Ann. Acad. Scie. Fenn. Ser. A I Math., 1 (1975), 13-25. Zbl0314.32001MR409873
  41. PROKHOROV, D. - VASIL'EV, A., Singular and tangent slit solutions to the Löwner equation, in Analysis and Mathematical Physics, Trends in Mathematics (Birkhuser Verlag, 2009), 455-463. MR2724626DOI10.1007/978-3-7643-9906-1_23
  42. POMMERENKE, CH., Über dis subordination analytischer funktionen, J. Reine Angew Math.218 (1965), 159-173. Zbl0184.30601MR180669DOI10.1515/crll.1965.218.159
  43. POMMERENKE, CH., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. MR507768
  44. POREDA, T., On generalized differential equations in Banach spaces, Dissertationes Mathematicae, 310 (1991), 1-50. Zbl0745.35048MR1104523
  45. REICH, S. - SHOIKHET, D., Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal.3, no. 1-2 (1998), 203-228. Zbl0993.47040MR1700285DOI10.1155/S1085337598000529
  46. REICH, S. - SHOIKHET, D., Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005. MR2022955DOI10.1142/9781860947148
  47. SCHRAMM, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math.118 (2000), 221-288. Zbl0968.60093MR1776084DOI10.1007/BF02803524
  48. VODA, M., Solution of a Loewner chain equation in several variables, J. Math. Anal. Appl.375, no. 1 (2011), 58-74. Zbl1209.32007MR2735694DOI10.1016/j.jmaa.2010.08.057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.