Holomorphic Evolution: Metamorphosis of the Loewner Equations
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 1, page 137-165
- ISSN: 0392-4041
Access Full Article
topHow to cite
topBracci, Filippo. "Holomorphic Evolution: Metamorphosis of the Loewner Equations." Bollettino dell'Unione Matematica Italiana 6.1 (2013): 137-165. <http://eudml.org/doc/294028>.
@article{Bracci2013,
author = {Bracci, Filippo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {137-165},
publisher = {Unione Matematica Italiana},
title = {Holomorphic Evolution: Metamorphosis of the Loewner Equations},
url = {http://eudml.org/doc/294028},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Bracci, Filippo
TI - Holomorphic Evolution: Metamorphosis of the Loewner Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/2//
PB - Unione Matematica Italiana
VL - 6
IS - 1
SP - 137
EP - 165
LA - eng
UR - http://eudml.org/doc/294028
ER -
References
top- ABATE, M., Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, Cosenza, 1989. Zbl0747.32002MR1098711
- ABATE, M. - BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., The evolution of Loewner's differential equationsNewsletter European Math. Soc.78 (December 2010), 31-38. Zbl1230.30003MR2768999
- AHARONOV, D. - REICH, S. - SHOIKHET, D., Flow invariance conditions for holomorphic mappings in Banach spaces. Math. Proc. R. Ir. Acad.99A, no. 1 (1999), 93-104. Zbl0947.46033MR1883068
- AROSIO, L., Resonances in Loewner equations, Adv. Math.227 (2011), 1413-1435. Zbl1256.32022MR2799800DOI10.1016/j.aim.2011.03.010
- AROSIO, L. - BRACCI, F. - HAMADA, H. - KOHR, G., Loewner's theory on complex manifolds, J. Anal. Math., to appear.
- AROSIO, L. - BRACCI, F., Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds, Anal. Math. Phys., 1, 4 (2011), 337-350. Zbl1254.32037MR2887104DOI10.1007/s13324-011-0020-3
- AROSIO, L., Basins of attraction in Loewner equations, Ann. Acad. Sci. Fenn. Math., to appear. Zbl1281.32015MR2987086DOI10.5186/aasfm.2012.3742
- BERKSON, E. - PORTA, H., Semigroups of holomorphic functions and composition operators, Michigan Math. J.25 (1978), 101-115. Zbl0382.47017MR480965
- BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Pluripotential theory, semigroups and boundary behavior of infinitesimal generators in strongly convex domains, J. Eur. Math. Soc.12 (2010), 23-53. Zbl1185.32010MR2578602DOI10.4171/JEMS/188
- BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Evolution Families and the Loewner Equation I: the unit disc, J. Reine Angew Math. (Crelle's Journal), 672, (2012), 1-37. Zbl1267.30025MR2995431DOI10.1515/crelle.2011.167
- BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Evolution Families and the Loewner Equation II: complex hyperbolic manifolds, Math. Ann.344 (2009), 947- 962. Zbl1198.32010MR2507634DOI10.1007/s00208-009-0340-x
- BRACCI, F. - CONTRERAS, M. D. - DÍAZ-MADRIGAL, S., Semigroups versus evolution families in the Loewner theory. J. Anal. Math, 115, 1, (2011), 273-292. Zbl1310.30007MR2855040DOI10.1007/s11854-011-0030-y
- CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Loewner chains in the unit disc, Rev. Mat. Iberoamericana, 26, 3 (2010), 975-1012. Zbl1209.30011MR2789373DOI10.4171/RMI/624
- CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Loewner Theory in annulus I: evolution families and differential equations. Trans. Amer. Math. Soc., to appear. Zbl1281.30007MR3020107DOI10.1090/S0002-9947-2012-05718-7
- CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Loewner theory in annulus II: Loewner chains. Anal. Math. Phys., 1, 4, (2011), 351-385. Zbl1257.30004MR2887105DOI10.1007/s13324-011-0016-z
- CONTRERAS, M. D. - DÍAZ-MADRIGAL, S. - GUMENYUK, P., Local duality in Loewner equations, in preparation. Zbl1316.30025
- DE BRANGES, L., A proof of the Bieberbach conjecture, Acta Math.154 (1985), 137-152. Zbl0573.30014MR772434DOI10.1007/BF02392821
- DUREN, P. L., Univalent Functions, Springer, New York, 1983. MR708494
- EARLE, C. - EPSTEIN, A., Quasiconformal variation of slit domains. Proc. Amer. math. Soc.129 (2001), 3363-3372. Zbl0977.30008MR1845014DOI10.1090/S0002-9939-01-05991-3
- FITZGERALD, C. H. - POMMERENKE, CH., The de Branges theorem on univalent functions. Trans. Amer. Math. Soc.290, no. 2 (1985), 683-690. Zbl0574.30018MR792819DOI10.2307/2000306
- FORNÆSS, J. E. - SIBONY, N., Increasing sequences of complex manifolds. Math. Ann.255 (1981), 351-360. Zbl0438.32012MR615855DOI10.1007/BF01450708
- GRAHAM, I. - HAMADA, H. - KOHR, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54 (2002), 324-351. Zbl1004.32007MR1892999DOI10.4153/CJM-2002-011-2
- GRAHAM, I. - HAMADA, H. - KOHR, G. - KOHR, M., Asymptotically spirallike mappings in several complex variables, J. Anal. Math., 105 (2008), 267-302. Zbl1148.32009MR2438427DOI10.1007/s11854-008-0037-1
- GRAHAM, I. - KOHR, G., Geometric function theory in one and higher dimensions, Marcel Dekker Inc., New York, 2003. Zbl1042.30001MR2017933DOI10.1201/9780203911624
- GRAHAM, I. - KOHR, G. - PFALTZGRAFF, J. A., The general solution of the Loewner differential equation on the unit ball in , Contemporary Math. (AMS), 382 (2005), 191-203. Zbl1089.32008MR2175888DOI10.1090/conm/382/07059
- HAMADA, H. - KOHR, G. - MUIR, J. R., Extension of -Loewner chains to higher dimensions. Preprint, 2011. MR3095158DOI10.1007/s11854-013-0024-z
- KAGER, W. - NIENHUIS, B. - KADANOFF, L. P., Exact solutions for Loewner evolutions. J. Statist. Phys.115, 3-4 (2004), 805-822. Zbl1056.30005MR2054162DOI10.1023/B:JOSS.0000022380.93241.24
- KOBAYASHI, S., Hyperbolic complex spaces. Springer-VerlagBerlinHeidelberg, 1998 Zbl0917.32019MR1635983DOI10.1007/978-3-662-03582-5
- KUFAREV, P. P., On one-parameter families of analytic functions, (in Russian) Mat. Sb.13 (1943), 87-118. MR13800
- KUFAREV, P. P., On integrals of a very simple differential equation with movable polar singularity in the right hand side (in Russian) Tomsk. Gos. Univ. Uchen. Zap. no. 1 (1946), 35-48. MR30604
- KUFAREV, P. P., A remark on the integrals of the Loewner eqaution, Dokl. Akad. Nauk. SSSR, 57 (1947), 655-656 (in Russian). MR23907
- KUFAREV, P. P. - SOBOLEV, V. V. - SPORYSHEVA, L. V., A certain method of investigation of extremal problems for functions that are univalent in the half-plane, Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat.200 (1968), 142-164. MR257336
- LAWLER, G. F., Conformally invariant processes in the plane, Mathematical surveyes and monograph, vol. 114, Amer. Math. Soc. (2005). Zbl1074.60002MR2129588
- LAWLER, G. F. - SCHRAMM, O. - WERNER, W., Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math.187 (2001), 237-273. Zbl1005.60097MR1879850DOI10.1007/BF02392618
- LAWLER, G. F. - SCHRAMM, O. - WERNER, W., Values of Brownian intersection exponents. II. Plane exponents, Acta Math.187 (2001), 275-308. Zbl0993.60083MR1879851DOI10.1007/BF02392619
- LOEWNER, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann.89 (1923), 103-121. MR1512136DOI10.1007/BF01448091
- LIND, J. R., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math.30, 1 (2005), 143-158. Zbl1069.30012MR2140303
- MARSHALL, D. E. - ROHDE, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc.18 (2005), 763-778. Zbl1078.30005MR2163382DOI10.1090/S0894-0347-05-00492-3
- PFALTZGRAFF, J. A., Subordination chains and univalence of holomorphic mappings in , Math. Ann., 210 (1974), 55-68. Zbl0275.32012MR352510DOI10.1007/BF01344545
- PFALTZGRAFF, J. A., Subordination chains and quasiconformal extension of holomorphic maps in , Ann. Acad. Scie. Fenn. Ser. A I Math., 1 (1975), 13-25. Zbl0314.32001MR409873
- PROKHOROV, D. - VASIL'EV, A., Singular and tangent slit solutions to the Löwner equation, in Analysis and Mathematical Physics, Trends in Mathematics (Birkhuser Verlag, 2009), 455-463. MR2724626DOI10.1007/978-3-7643-9906-1_23
- POMMERENKE, CH., Über dis subordination analytischer funktionen, J. Reine Angew Math.218 (1965), 159-173. Zbl0184.30601MR180669DOI10.1515/crll.1965.218.159
- POMMERENKE, CH., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. MR507768
- POREDA, T., On generalized differential equations in Banach spaces, Dissertationes Mathematicae, 310 (1991), 1-50. Zbl0745.35048MR1104523
- REICH, S. - SHOIKHET, D., Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal.3, no. 1-2 (1998), 203-228. Zbl0993.47040MR1700285DOI10.1155/S1085337598000529
- REICH, S. - SHOIKHET, D., Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005. MR2022955DOI10.1142/9781860947148
- SCHRAMM, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math.118 (2000), 221-288. Zbl0968.60093MR1776084DOI10.1007/BF02803524
- VODA, M., Solution of a Loewner chain equation in several variables, J. Math. Anal. Appl.375, no. 1 (2011), 58-74. Zbl1209.32007MR2735694DOI10.1016/j.jmaa.2010.08.057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.