Subalgebras of diagonalizable algebras of theories containing arithmetic

Vladimir Yu. Shavrukov

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1993

Abstract

top
CONTENTS0. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62. On conservativity in L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133. A family of Kripke models. . . . . . . . . . . . . . . . . . . . . . . . . . . 204. Finite credibility extent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245. The strong disjunction property and steady formulae. . . . . .336. Σ 1 -ill theories of infinite credibility extent. . . . . . . . . . . . 417. Σ 1 -sound theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528. An application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .579. A question of arithmetical complexity. . . . . . . . . . . . . . . . . . .5910. Arbitrary subalgebras. Σ 1 -ill theories. . . . . . . . . . . . . . 6611. Arbitrary subalgebras. Σ 1 -sound theories. . . . . . . . . . 74References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801991 Mathematics Subject Classification: Primary 03F40, 03G25; Secondary 03F30, 03B45.

How to cite

top

Vladimir Yu. Shavrukov. Subalgebras of diagonalizable algebras of theories containing arithmetic. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1993. <http://eudml.org/doc/219353>.

@book{VladimirYu1993,
abstract = {CONTENTS0. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62. On conservativity in L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133. A family of Kripke models. . . . . . . . . . . . . . . . . . . . . . . . . . . 204. Finite credibility extent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245. The strong disjunction property and steady formulae. . . . . .336. $Σ_1$-ill theories of infinite credibility extent. . . . . . . . . . . . 417. $Σ_1$-sound theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528. An application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .579. A question of arithmetical complexity. . . . . . . . . . . . . . . . . . .5910. Arbitrary subalgebras. $Σ_1$-ill theories. . . . . . . . . . . . . . 6611. Arbitrary subalgebras. $Σ_1$-sound theories. . . . . . . . . . 74References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801991 Mathematics Subject Classification: Primary 03F40, 03G25; Secondary 03F30, 03B45.},
author = {Vladimir Yu. Shavrukov},
keywords = {provability logic; propositional modal logic; first-order arithmetic theories; algebraic semantics; diagonalizable algebras; interpolation theorem; strong disjunction property},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Subalgebras of diagonalizable algebras of theories containing arithmetic},
url = {http://eudml.org/doc/219353},
year = {1993},
}

TY - BOOK
AU - Vladimir Yu. Shavrukov
TI - Subalgebras of diagonalizable algebras of theories containing arithmetic
PY - 1993
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS0. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62. On conservativity in L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133. A family of Kripke models. . . . . . . . . . . . . . . . . . . . . . . . . . . 204. Finite credibility extent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245. The strong disjunction property and steady formulae. . . . . .336. $Σ_1$-ill theories of infinite credibility extent. . . . . . . . . . . . 417. $Σ_1$-sound theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528. An application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .579. A question of arithmetical complexity. . . . . . . . . . . . . . . . . . .5910. Arbitrary subalgebras. $Σ_1$-ill theories. . . . . . . . . . . . . . 6611. Arbitrary subalgebras. $Σ_1$-sound theories. . . . . . . . . . 74References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801991 Mathematics Subject Classification: Primary 03F40, 03G25; Secondary 03F30, 03B45.
LA - eng
KW - provability logic; propositional modal logic; first-order arithmetic theories; algebraic semantics; diagonalizable algebras; interpolation theorem; strong disjunction property
UR - http://eudml.org/doc/219353
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.