Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana
Bollettino dell'Unione Matematica Italiana (1998)
- Volume: 1-A, Issue: 1S, page 113-116
- ISSN: 0392-4041
Access Full Article
topHow to cite
topFerrari, Fausto. "Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana." Bollettino dell'Unione Matematica Italiana 1-A.1S (1998): 113-116. <http://eudml.org/doc/219376>.
@article{Ferrari1998,
author = {Ferrari, Fausto},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Harnack principle; harmonic functions; Hölder boundary; Fatou type theorems; Neuman problem; free boundary; Lipschitz domains; harmonic measure; non-tangentially accessible domains; Dirichlet problem},
language = {ita},
month = {4},
number = {1S},
pages = {113-116},
publisher = {Unione Matematica Italiana},
title = {Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana},
url = {http://eudml.org/doc/219376},
volume = {1-A},
year = {1998},
}
TY - JOUR
AU - Ferrari, Fausto
TI - Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/4//
PB - Unione Matematica Italiana
VL - 1-A
IS - 1S
SP - 113
EP - 116
LA - ita
KW - Harnack principle; harmonic functions; Hölder boundary; Fatou type theorems; Neuman problem; free boundary; Lipschitz domains; harmonic measure; non-tangentially accessible domains; Dirichlet problem
UR - http://eudml.org/doc/219376
ER -
References
top- ANCONA, A., Principe de Harnack à la frontier et theèorem de Fatou pour un operatore elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213. Zbl0377.31001MR513885
- BANUELOS, R., BASS, R. e BURDZY, K., Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200. Zbl0755.35027MR1131398DOI10.1215/S0012-7094-91-06408-2
- BASS, R. e BURDZY, K., A boundary Harnack principle for twisted Hölder domains, Ann. of Math., 134 (1991), 253-276. Zbl0747.31008MR1127476DOI10.2307/2944347
- CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part I, Lipschitz free boundaries are , Revista Math. Iberoamericana, 3 (1987), 139-162. Zbl0676.35085MR990856DOI10.4171/RMI/47
- CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part II, Flat free boundaries are Lipschitz, CPAM, 42 (1989), 55-78. Zbl0676.35086MR973745DOI10.1002/cpa.3160420105
- CAFFARELLI, L., FABES, E., MORTOLA, S. e SALSA, S., Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981), 621-640. Zbl0512.35038MR620271DOI10.1512/iumj.1981.30.30049
- DAHLBERG, B., Estimates of harmonic measure, Arch. Rat. Mech. Anal., 65, (1977), 275-288. Zbl0406.28009MR466593
- HUNT, R. e WHEEDEN, R., On the boundary values of harmonic functions, Trans. Amer. Math. Soc, 132 (1968), 307-322. Zbl0159.40501MR226044
- JERISON, J. e KENIG, , Boundary behavior of harmonic functions in Non-tangentially Accessible Domains, Advances in mathematics, 46 (1982), 80-147. Zbl0514.31003MR676988DOI10.1016/0001-8708(82)90055-X
- KENIG, C., Harmonic analysis techniques for second order elliptic boundary value problems, CBMS, 83 (1994). Zbl0812.35001MR1282720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.