Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana

Fausto Ferrari

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-A, Issue: 1S, page 113-116
  • ISSN: 0392-4041

How to cite

top

Ferrari, Fausto. "Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana." Bollettino dell'Unione Matematica Italiana 1-A.1S (1998): 113-116. <http://eudml.org/doc/219376>.

@article{Ferrari1998,
author = {Ferrari, Fausto},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Harnack principle; harmonic functions; Hölder boundary; Fatou type theorems; Neuman problem; free boundary; Lipschitz domains; harmonic measure; non-tangentially accessible domains; Dirichlet problem},
language = {ita},
month = {4},
number = {1S},
pages = {113-116},
publisher = {Unione Matematica Italiana},
title = {Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana},
url = {http://eudml.org/doc/219376},
volume = {1-A},
year = {1998},
}

TY - JOUR
AU - Ferrari, Fausto
TI - Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/4//
PB - Unione Matematica Italiana
VL - 1-A
IS - 1S
SP - 113
EP - 116
LA - ita
KW - Harnack principle; harmonic functions; Hölder boundary; Fatou type theorems; Neuman problem; free boundary; Lipschitz domains; harmonic measure; non-tangentially accessible domains; Dirichlet problem
UR - http://eudml.org/doc/219376
ER -

References

top
  1. ANCONA, A., Principe de Harnack à la frontier et theèorem de Fatou pour un operatore elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213. Zbl0377.31001MR513885
  2. BANUELOS, R., BASS, R. e BURDZY, K., Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200. Zbl0755.35027MR1131398DOI10.1215/S0012-7094-91-06408-2
  3. BASS, R. e BURDZY, K., A boundary Harnack principle for twisted Hölder domains, Ann. of Math., 134 (1991), 253-276. Zbl0747.31008MR1127476DOI10.2307/2944347
  4. CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part I, Lipschitz free boundaries are C 1 , α , Revista Math. Iberoamericana, 3 (1987), 139-162. Zbl0676.35085MR990856DOI10.4171/RMI/47
  5. CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part II, Flat free boundaries are Lipschitz, CPAM, 42 (1989), 55-78. Zbl0676.35086MR973745DOI10.1002/cpa.3160420105
  6. CAFFARELLI, L., FABES, E., MORTOLA, S. e SALSA, S., Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981), 621-640. Zbl0512.35038MR620271DOI10.1512/iumj.1981.30.30049
  7. DAHLBERG, B., Estimates of harmonic measure, Arch. Rat. Mech. Anal., 65, (1977), 275-288. Zbl0406.28009MR466593
  8. HUNT, R. e WHEEDEN, R., On the boundary values of harmonic functions, Trans. Amer. Math. Soc, 132 (1968), 307-322. Zbl0159.40501MR226044
  9. JERISON, J. e KENIG, , Boundary behavior of harmonic functions in Non-tangentially Accessible Domains, Advances in mathematics, 46 (1982), 80-147. Zbl0514.31003MR676988DOI10.1016/0001-8708(82)90055-X
  10. KENIG, C., Harmonic analysis techniques for second order elliptic boundary value problems, CBMS, 83 (1994). Zbl0812.35001MR1282720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.