Teoremi di convergenza in teoria della misura non commutativa

Simonetta Salvati

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-A, Issue: 1S, page 145-148
  • ISSN: 0392-4041

How to cite

top

Salvati, Simonetta. "Teoremi di convergenza in teoria della misura non commutativa." Bollettino dell'Unione Matematica Italiana 1-A.1S (1998): 145-148. <http://eudml.org/doc/219420>.

@article{Salvati1998,
author = {Salvati, Simonetta},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {convergence theorems; noncommutative measure theory},
language = {ita},
month = {4},
number = {1S},
pages = {145-148},
publisher = {Unione Matematica Italiana},
title = {Teoremi di convergenza in teoria della misura non commutativa},
url = {http://eudml.org/doc/219420},
volume = {1-A},
year = {1998},
}

TY - JOUR
AU - Salvati, Simonetta
TI - Teoremi di convergenza in teoria della misura non commutativa
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/4//
PB - Unione Matematica Italiana
VL - 1-A
IS - 1S
SP - 145
EP - 148
LA - ita
KW - convergence theorems; noncommutative measure theory
UR - http://eudml.org/doc/219420
ER -

References

top
  1. ANTOSIK, P. e SWARTZ, C., Matrix Methods in Analysis, Springer Verlag (1985). Zbl0564.46001MR781343
  2. CACCIOPPOLI, R., Integrali impropri di Stieltjes. Estensione del teorema di Vitali, Rend.Acc.Sc.Fis.Mat.Napoli (3), 33 (1927), 150-153. JFM53.0232.04
  3. D'ANDREA, A.B. and DE LUCIA, P., Sul passaggio al limite sotto il segno di integrale per funzioni a valori in un gruppo topologico, Le Matematiche, 34 (1979), 56-73. Zbl0505.28005
  4. PAP, E., Funkcionalna Analiza, Univerzitet u Novom Sadu, Insitut za Matematiku (1982). MR683763
  5. RICKART, C.E., Decomposition of additive set functions, Duke Math. J., 10 (1943), 653-665. Zbl0063.06492MR9977
  6. SCHACHERMAYER, W., On some classical measure-theoretic theorems for non-sigma complete Boolean algebras, Dissertationes Math., 214 (1982), 1-33. Zbl0522.28007MR673286
  7. SWARTZ, C., An introduction to functional analysis, Dekker, New York (1992). Zbl0751.46002MR1156078
  8. VON NEUMANN, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, (1955). Zbl0064.21503MR66944
  9. WEBER, H., Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodym's boundedness theorem, Rocky Mount. J. Math., 16 (1986), 253-275. Zbl0604.28006MR843053DOI10.1216/RMJ-1986-16-2-253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.