On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1982
Access Full Book
topAbstract
topHow to cite
topWalter Schachermayer. On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1982. <http://eudml.org/doc/268517>.
@book{WalterSchachermayer1982,
abstract = {CONTENTSIntroduction...................................................................................5§1. Preliminaries...........................................................................7§2. Definitions and a theorem of Diestel, Faires and Huff.............9§3. Examples...............................................................................13§4. Some special classes of Boolean algebras ..........................19§5. The Grothendieck property...................................................22§6. The Orlicz-Pettis property ....................................................27References.................................................................................32ERRATA
Page, line: 6¹
For: barelled Read: barrelled
Page, line: 6¹²
For: coordinate Read: coordinate)
Page, line: 6₇
For: barreled Read: barrelled
Page, line: 7₁₁
For: Bodean algebra Read: Boolean algebra
Page, line: 9¹⁵
For: Randon-measure Read: Radon-measure
Page, line: 17₆
For: concides Read: coincides
Page, line: 25₁
For: j* Read: j⁎
Page, line: 29³ˑ⁵
For: $x_\{m_j\}$ Read: $x_\{m̅_j\}$},
author = {Walter Schachermayer},
keywords = {Vitali-Hahn-Saks theorem; Nikodym theorem; Orlicz-Pettis theorem; Grothendieck space; Rosenthal space; Boolean algebra; weak topology},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras},
url = {http://eudml.org/doc/268517},
year = {1982},
}
TY - BOOK
AU - Walter Schachermayer
TI - On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras
PY - 1982
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...................................................................................5§1. Preliminaries...........................................................................7§2. Definitions and a theorem of Diestel, Faires and Huff.............9§3. Examples...............................................................................13§4. Some special classes of Boolean algebras ..........................19§5. The Grothendieck property...................................................22§6. The Orlicz-Pettis property ....................................................27References.................................................................................32ERRATA
Page, line: 6¹
For: barelled Read: barrelled
Page, line: 6¹²
For: coordinate Read: coordinate)
Page, line: 6₇
For: barreled Read: barrelled
Page, line: 7₁₁
For: Bodean algebra Read: Boolean algebra
Page, line: 9¹⁵
For: Randon-measure Read: Radon-measure
Page, line: 17₆
For: concides Read: coincides
Page, line: 25₁
For: j* Read: j⁎
Page, line: 29³ˑ⁵
For: $x_{m_j}$ Read: $x_{m̅_j}$
LA - eng
KW - Vitali-Hahn-Saks theorem; Nikodym theorem; Orlicz-Pettis theorem; Grothendieck space; Rosenthal space; Boolean algebra; weak topology
UR - http://eudml.org/doc/268517
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.