On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras

Walter Schachermayer

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1982

Abstract

top
CONTENTSIntroduction...................................................................................5§1. Preliminaries...........................................................................7§2. Definitions and a theorem of Diestel, Faires and Huff.............9§3. Examples...............................................................................13§4. Some special classes of Boolean algebras ..........................19§5. The Grothendieck property...................................................22§6. The Orlicz-Pettis property ....................................................27References.................................................................................32ERRATA Page, line: 6¹ For: barelled Read: barrelled Page, line: 6¹² For: coordinate Read: coordinate) Page, line: 6₇ For: barreled Read: barrelled Page, line: 7₁₁ For: Bodean algebra Read: Boolean algebra Page, line: 9¹⁵ For: Randon-measure Read: Radon-measure Page, line: 17₆ For: concides Read: coincides Page, line: 25₁ For: j* Read: j⁎ Page, line: 29³ˑ⁵ For: x m j Read: x m ̅ j

How to cite

top

Walter Schachermayer. On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1982. <http://eudml.org/doc/268517>.

@book{WalterSchachermayer1982,
abstract = {CONTENTSIntroduction...................................................................................5§1. Preliminaries...........................................................................7§2. Definitions and a theorem of Diestel, Faires and Huff.............9§3. Examples...............................................................................13§4. Some special classes of Boolean algebras ..........................19§5. The Grothendieck property...................................................22§6. The Orlicz-Pettis property ....................................................27References.................................................................................32ERRATA Page, line: 6¹ For: barelled Read: barrelled Page, line: 6¹² For: coordinate Read: coordinate) Page, line: 6₇ For: barreled Read: barrelled Page, line: 7₁₁ For: Bodean algebra Read: Boolean algebra Page, line: 9¹⁵ For: Randon-measure Read: Radon-measure Page, line: 17₆ For: concides Read: coincides Page, line: 25₁ For: j* Read: j⁎ Page, line: 29³ˑ⁵ For: $x_\{m_j\}$ Read: $x_\{m̅_j\}$},
author = {Walter Schachermayer},
keywords = {Vitali-Hahn-Saks theorem; Nikodym theorem; Orlicz-Pettis theorem; Grothendieck space; Rosenthal space; Boolean algebra; weak topology},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras},
url = {http://eudml.org/doc/268517},
year = {1982},
}

TY - BOOK
AU - Walter Schachermayer
TI - On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras
PY - 1982
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...................................................................................5§1. Preliminaries...........................................................................7§2. Definitions and a theorem of Diestel, Faires and Huff.............9§3. Examples...............................................................................13§4. Some special classes of Boolean algebras ..........................19§5. The Grothendieck property...................................................22§6. The Orlicz-Pettis property ....................................................27References.................................................................................32ERRATA Page, line: 6¹ For: barelled Read: barrelled Page, line: 6¹² For: coordinate Read: coordinate) Page, line: 6₇ For: barreled Read: barrelled Page, line: 7₁₁ For: Bodean algebra Read: Boolean algebra Page, line: 9¹⁵ For: Randon-measure Read: Radon-measure Page, line: 17₆ For: concides Read: coincides Page, line: 25₁ For: j* Read: j⁎ Page, line: 29³ˑ⁵ For: $x_{m_j}$ Read: $x_{m̅_j}$
LA - eng
KW - Vitali-Hahn-Saks theorem; Nikodym theorem; Orlicz-Pettis theorem; Grothendieck space; Rosenthal space; Boolean algebra; weak topology
UR - http://eudml.org/doc/268517
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.