Voiculescu’s Entropy and Potential Theory

Thomas Bloom[1]

  • [1] Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3 Canada

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: S2, page 57-69
  • ISSN: 0240-2963

Abstract

top
We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.

How to cite

top

Bloom, Thomas. "Voiculescu’s Entropy and Potential Theory." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 57-69. <http://eudml.org/doc/219679>.

@article{Bloom2011,
abstract = {We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.},
affiliation = {Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3 Canada},
author = {Bloom, Thomas},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {large deviation; entropy; Markov's property; weighted potential theory},
language = {eng},
month = {4},
number = {S2},
pages = {57-69},
publisher = {Université Paul Sabatier, Toulouse},
title = {Voiculescu’s Entropy and Potential Theory},
url = {http://eudml.org/doc/219679},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Bloom, Thomas
TI - Voiculescu’s Entropy and Potential Theory
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 57
EP - 69
AB - We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.
LA - eng
KW - large deviation; entropy; Markov's property; weighted potential theory
UR - http://eudml.org/doc/219679
ER -

References

top
  1. Baran (M.).— Complex equilibrium measure and Bernstein type theorems for compact sets in n , Proc Am. Math. Soc. 123. no. 2, p. 485-494 (1995). Zbl0813.32011MR1219719
  2. Berman (R.).— Large deviations and entropy for determinental point processes on complex manifolds, arxiv:0812.4224. 
  3. Berman (R.).— Determinental point processes and fermions on complex manifolds: bulk universality arxiv:0811.3341. 
  4. Bloom (T.) and Levenberg (N.).— Capacity convergence results and applications to a Bernstein-Markov inequality, Tr. Am. Math Soc. 351. no. 12, p. 4753-4767 (1999). Zbl0933.31007MR1695017
  5. Bloom (T.) and Levenberg (N.).— Asymptotics for Christoffel functions of Planar Measures, J. D’Anal Math. 106, p. 353-371 (2008). Zbl1158.28001MR2448990
  6. Bloom (T.) and Levenberg (N.).— Transfinite diameter notions in n and integrals of Van-DerMonde determinants, arxiv:0712.2844. Zbl1196.31003
  7. Bloom (T.).— Weighted polynomials and weighted pluripotential theory, Tr. Am. Math Soc. 361 no. 4, p. 2163-2179 (2009). Zbl1166.32019MR2465832
  8. Bloom (T.).— “Large Deviations for VanDerMonde determinants" talk given at the Work-shop on Complex Hyperbolic Geometry and Related Topics (November 17-21, 2008) at the Fields Institute. http://www.fields.utoronto.ca/audio/08-09/hyperbolic/bloom/. 
  9. Ben Arous (G.) and Guionnet (A.).— Large deviation for Wigner’s law and Voiculescu’s non-commutative entopy, Prob. Th. Related Fields 108 (1997), p. 517-542. Zbl0954.60029MR1465640
  10. Ben Arous (G.) and Zeitouni (O.).— Large deviations from the circular law, ESAIM: Probability and Statistics 2, 123-134 (1998). Zbl0916.60022MR1660943
  11. Borwein (P.) and Erdelyi (T.).— Polynomials and Polynomial Inequalities, Springer Graduate Texts in Mathematics 161, New York (1995). Zbl0840.26002MR1367960
  12. Dembo (A.) and Zeitouni (O.).— Large Deviation Techniques and Applications, 2nd edition, Springer, New York (1998). Zbl1177.60035MR1619036
  13. Deift (P.).— Othogonal Polynomials and Random Matrices: A Riemann-Hilbert approach, AMS Providence RI (1999). Zbl0997.47033MR1677884
  14. Ellis (R.S.).— Entropy, Large Deviations and Statistical Mechanics, Springer, New York/Berlin (1985). Zbl1102.60087MR793553
  15. Hiai (F.) and Petz (D.).— The Semicircle Law, Free Random Variables and Entropy, AMS Providence RI (2000). Zbl0955.46037MR1746976
  16. Klimek (M.).— Pluripotential Theory, Oxford University Press, Oxford (1991). Zbl0742.31001MR1150978
  17. Plesniak (W.).— Inegalite de Markov en plusieurs variables, Int. J of Math and Math. Science, Art ID 24549, p. 1-12 (2006). Zbl1153.41302MR2251749
  18. Saff (E.) and Totik (V.).— Logarithmic Potential with External Fields, Springer-Verlag, Berlin (1997). Zbl0881.31001MR1485778
  19. Stahl (H.) and Totik (V.).— General Orthogonal Polynomials, Cambridge Unviersity Press, Cambridge (1992). Zbl1187.33008MR1163828
  20. Voiculescu (D.).— The analogues of entropy and of Fisher’s information measure in free probability theory I, Comm. Math. Phy. 155, p. 71-92 (1993). Zbl0781.60006MR1228526
  21. Voiculescu (D.).— The analogues of entropy and of Fisher’s information measure in free probability II, Inv. Math. 118, p. 411-440 (1994). Zbl0820.60001MR1296352
  22. Zeitouni (O.) and Zelditch (S.).— Large Deviations of empirical zero point measures on Riemann surfaces, I : g = 0 arxiv:0904.4271. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.