Differential approach for the study of duals of algebraic-geometric codes on surfaces
- [1] INRIA Saclay, Projet Tanc École polytechnique Laboratoire d’informatique LIX, UMR 7161 91128 Palaiseau Cedex, France
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 1, page 95-120
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCouvreur, Alain. "Differential approach for the study of duals of algebraic-geometric codes on surfaces." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 95-120. <http://eudml.org/doc/219685>.
@article{Couvreur2011,
abstract = {The purpose of the present article is the study of duals of functional codes on algebraic surfaces. We give a direct geometrical description of them, using differentials. Even if this description is less trivial, it can be regarded as a natural extension to surfaces of the result asserting that the dual of a functional code $C_L (D,G)$ on a curve is the differential code $C_\{\Omega \}(D,G)$ . We study the parameters of such codes and state a lower bound for their minimum distance. Using this bound, one can study some examples of codes on surfaces, and in particular surfaces with Picard number $1$ like elliptic quadrics or some particular cubic surfaces. The parameters of some of the studied codes reach those of the best known codes up to now.},
affiliation = {INRIA Saclay, Projet Tanc École polytechnique Laboratoire d’informatique LIX, UMR 7161 91128 Palaiseau Cedex, France},
author = {Couvreur, Alain},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {algebraic geometry codes; algebraic surfaces; differentials},
language = {eng},
month = {3},
number = {1},
pages = {95-120},
publisher = {Société Arithmétique de Bordeaux},
title = {Differential approach for the study of duals of algebraic-geometric codes on surfaces},
url = {http://eudml.org/doc/219685},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Couvreur, Alain
TI - Differential approach for the study of duals of algebraic-geometric codes on surfaces
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 95
EP - 120
AB - The purpose of the present article is the study of duals of functional codes on algebraic surfaces. We give a direct geometrical description of them, using differentials. Even if this description is less trivial, it can be regarded as a natural extension to surfaces of the result asserting that the dual of a functional code $C_L (D,G)$ on a curve is the differential code $C_{\Omega }(D,G)$ . We study the parameters of such codes and state a lower bound for their minimum distance. Using this bound, one can study some examples of codes on surfaces, and in particular surfaces with Picard number $1$ like elliptic quadrics or some particular cubic surfaces. The parameters of some of the studied codes reach those of the best known codes up to now.
LA - eng
KW - algebraic geometry codes; algebraic surfaces; differentials
UR - http://eudml.org/doc/219685
ER -
References
top- Y. Aubry, Reed-Muller codes associated to projective algebraic varieties. Lecture Notes in Math. 1518 (1992), 4–17. Zbl0781.94004MR1186411
- Y. Aubry, M. Perret, On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields. Finite Fields Appl. 10(3) (2004), 412–431. Zbl1116.14012MR2067606
- A. Couvreur, Sums of residues on algebraic surfaces and application to coding theory. J. of Pure and Appl. Algebra 213 (2009), 2201–2223. Zbl1174.14023MR2553597
- A. Couvreur, Résidus de -formes différentielles sur les surfaces algébriques et applications aux codes correcteurs d’erreurs. PhD thesis, Inst. Math. Toulouse (2008). ArXiv:0905.2341.
- P. Delsarte, J.-M. Goethals, F. J. MacWilliams, On generalized Reed-Muller codes and their relatives. Information and Control. 16 (1970), 403–442. Zbl0267.94014MR274186
- I. Duursma, C.Y. Chen, Geometric Reed-Solomon codes of length 64 and 65 over . IEEE Trans. Inform. Theory 49(5) (2003), 1351–1353. Zbl1063.94107MR1984834
- F. A. B. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen’s conjecture. Finite Fields Appl. 13(3) (2007), 616–627. Zbl1155.94022MR2332489
- F. A. B. Edoukou, Codes defined by forms of degree 2 on quadric surfaces. IEEE Trans. Inform. Theory 54(2) (2008), 860–864. Zbl1311.94117MR2444563
- V. D. Goppa, Codes on algebraic curves. Dokl. Akad. Nauk SSSR. 259(6) (1981), 1289–1290. Zbl0489.94014MR628795
- M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, (2007). Accessed on 2010-11-15, http://www.codetables.de.
- R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, 1977. Zbl0531.14001MR463157
- J. Kollàr, K. E. Smith, A. Corti, Rational and nearly rational varieties. Cambridge University Press, 2004. Zbl1060.14073MR2062787
- F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. North-Holland Mathematical Library, 1977. Zbl0369.94008
- Martinínez-Moro, Edgar and Munuera, Carlos and Ruano, Diego, Advances in Algebraic Geometry Codes. World Scientific, 2008. Zbl1155.94006MR2516523
- A. N. Paršin, On the arithmetic of two-dimensional schemes. I. Distributions and residues. Izv. Akad. Nauk SSSR Ser. Mat. 40(4) (1976), 736–773. Zbl0358.14012MR419458
- V. S. Pless, W. C. Huffman, R. A. Brualdi, Handbook of coding theory. North-Holland Mathematical Library, 1998. MR1667937
- B. Poonen, Bertini theorems over finite fields. Ann. of Math. 160(3) (2004), 1099–1127. Zbl1084.14026MR2144974
- R. Schürer, W. C. Schmid, MinT: a database for optimal net parameters. In Monte Carlo and Quasi-Monte Carlo Methods, (2006), 457–469. Available online on http://mint.sbg.ac.at. Zbl1130.65302MR2208725
- J.-P. Serre, Lettre à M. Tsfasman. Astérisque (198-200) (1992), 351–353. Zbl0758.14008MR1144337
- H. Stichtenoth, Algebraic function fields and codes. Universitext. Springer-Verlag, 1993. Zbl1155.14022MR1251961
- H. P. F. Swinnerton-Dyer, The Zeta function of a cubic surface over a finite field. Proc. Cambridge Philos. Soc. 63 (1967), 55–71. Zbl0201.53702MR204414
- S. G. Vlăduts, Y. I. Manin, Linear codes and modular curves. Itogi Nauki i Tekhniki (1984), 209–257. Zbl0629.94013MR770943
- F. Voloch, M. Zarzar, Algebraic geometric codes on surfaces. SMF Séminaires et congrès 21 (2009). Zbl1216.94066
- M. Zarzar, Error-correcting codes on low rank surfaces. Finite Fields Appl.13(4) (2007), 727–737. Zbl1167.94008MR2359313
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.