Differential approach for the study of duals of algebraic-geometric codes on surfaces

Alain Couvreur[1]

  • [1] INRIA Saclay, Projet Tanc École polytechnique Laboratoire d’informatique LIX, UMR 7161 91128 Palaiseau Cedex, France

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 95-120
  • ISSN: 1246-7405

Abstract

top
The purpose of the present article is the study of duals of functional codes on algebraic surfaces. We give a direct geometrical description of them, using differentials. Even if this description is less trivial, it can be regarded as a natural extension to surfaces of the result asserting that the dual of a functional code C L ( D , G ) on a curve is the differential code C Ω ( D , G ) . We study the parameters of such codes and state a lower bound for their minimum distance. Using this bound, one can study some examples of codes on surfaces, and in particular surfaces with Picard number 1 like elliptic quadrics or some particular cubic surfaces. The parameters of some of the studied codes reach those of the best known codes up to now.

How to cite

top

Couvreur, Alain. "Differential approach for the study of duals of algebraic-geometric codes on surfaces." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 95-120. <http://eudml.org/doc/219685>.

@article{Couvreur2011,
abstract = {The purpose of the present article is the study of duals of functional codes on algebraic surfaces. We give a direct geometrical description of them, using differentials. Even if this description is less trivial, it can be regarded as a natural extension to surfaces of the result asserting that the dual of a functional code $C_L (D,G)$ on a curve is the differential code $C_\{\Omega \}(D,G)$ . We study the parameters of such codes and state a lower bound for their minimum distance. Using this bound, one can study some examples of codes on surfaces, and in particular surfaces with Picard number $1$ like elliptic quadrics or some particular cubic surfaces. The parameters of some of the studied codes reach those of the best known codes up to now.},
affiliation = {INRIA Saclay, Projet Tanc École polytechnique Laboratoire d’informatique LIX, UMR 7161 91128 Palaiseau Cedex, France},
author = {Couvreur, Alain},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {algebraic geometry codes; algebraic surfaces; differentials},
language = {eng},
month = {3},
number = {1},
pages = {95-120},
publisher = {Société Arithmétique de Bordeaux},
title = {Differential approach for the study of duals of algebraic-geometric codes on surfaces},
url = {http://eudml.org/doc/219685},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Couvreur, Alain
TI - Differential approach for the study of duals of algebraic-geometric codes on surfaces
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 95
EP - 120
AB - The purpose of the present article is the study of duals of functional codes on algebraic surfaces. We give a direct geometrical description of them, using differentials. Even if this description is less trivial, it can be regarded as a natural extension to surfaces of the result asserting that the dual of a functional code $C_L (D,G)$ on a curve is the differential code $C_{\Omega }(D,G)$ . We study the parameters of such codes and state a lower bound for their minimum distance. Using this bound, one can study some examples of codes on surfaces, and in particular surfaces with Picard number $1$ like elliptic quadrics or some particular cubic surfaces. The parameters of some of the studied codes reach those of the best known codes up to now.
LA - eng
KW - algebraic geometry codes; algebraic surfaces; differentials
UR - http://eudml.org/doc/219685
ER -

References

top
  1. Y. Aubry, Reed-Muller codes associated to projective algebraic varieties. Lecture Notes in Math. 1518 (1992), 4–17. Zbl0781.94004MR1186411
  2. Y. Aubry, M. Perret, On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields. Finite Fields Appl. 10(3) (2004), 412–431. Zbl1116.14012MR2067606
  3. A. Couvreur, Sums of residues on algebraic surfaces and application to coding theory. J. of Pure and Appl. Algebra 213 (2009), 2201–2223. Zbl1174.14023MR2553597
  4. A. Couvreur, Résidus de 2 -formes différentielles sur les surfaces algébriques et applications aux codes correcteurs d’erreurs. PhD thesis, Inst. Math. Toulouse (2008). ArXiv:0905.2341. 
  5. P. Delsarte, J.-M. Goethals, F. J. MacWilliams, On generalized Reed-Muller codes and their relatives. Information and Control. 16 (1970), 403–442. Zbl0267.94014MR274186
  6. I. Duursma, C.Y. Chen, Geometric Reed-Solomon codes of length 64 and 65 over F 8 . IEEE Trans. Inform. Theory 49(5) (2003), 1351–1353. Zbl1063.94107MR1984834
  7. F. A. B. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen’s conjecture. Finite Fields Appl. 13(3) (2007), 616–627. Zbl1155.94022MR2332489
  8. F. A. B. Edoukou, Codes defined by forms of degree 2 on quadric surfaces. IEEE Trans. Inform. Theory 54(2) (2008), 860–864. Zbl1311.94117MR2444563
  9. V. D. Goppa, Codes on algebraic curves. Dokl. Akad. Nauk SSSR. 259(6) (1981), 1289–1290. Zbl0489.94014MR628795
  10. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, (2007). Accessed on 2010-11-15, http://www.codetables.de. 
  11. R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, 1977. Zbl0531.14001MR463157
  12. J. Kollàr, K. E. Smith, A. Corti, Rational and nearly rational varieties. Cambridge University Press, 2004. Zbl1060.14073MR2062787
  13. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. North-Holland Mathematical Library, 1977. Zbl0369.94008
  14. Martinínez-Moro, Edgar and Munuera, Carlos and Ruano, Diego, Advances in Algebraic Geometry Codes. World Scientific, 2008. Zbl1155.94006MR2516523
  15. A. N. Paršin, On the arithmetic of two-dimensional schemes. I. Distributions and residues. Izv. Akad. Nauk SSSR Ser. Mat. 40(4) (1976), 736–773. Zbl0358.14012MR419458
  16. V. S. Pless, W. C. Huffman, R. A. Brualdi, Handbook of coding theory. North-Holland Mathematical Library, 1998. MR1667937
  17. B. Poonen, Bertini theorems over finite fields. Ann. of Math. 160(3) (2004), 1099–1127. Zbl1084.14026MR2144974
  18. R. Schürer, W. C. Schmid, MinT: a database for optimal net parameters. In Monte Carlo and Quasi-Monte Carlo Methods, (2006), 457–469. Available online on http://mint.sbg.ac.at. Zbl1130.65302MR2208725
  19. J.-P. Serre, Lettre à M. Tsfasman. Astérisque (198-200) (1992), 351–353. Zbl0758.14008MR1144337
  20. H. Stichtenoth, Algebraic function fields and codes. Universitext. Springer-Verlag, 1993. Zbl1155.14022MR1251961
  21. H. P. F. Swinnerton-Dyer, The Zeta function of a cubic surface over a finite field. Proc. Cambridge Philos. Soc. 63 (1967), 55–71. Zbl0201.53702MR204414
  22. S. G. Vlăduts, Y. I. Manin, Linear codes and modular curves. Itogi Nauki i Tekhniki (1984), 209–257. Zbl0629.94013MR770943
  23. F. Voloch, M. Zarzar, Algebraic geometric codes on surfaces. SMF Séminaires et congrès 21 (2009). Zbl1216.94066
  24. M. Zarzar, Error-correcting codes on low rank surfaces. Finite Fields Appl.13(4) (2007), 727–737. Zbl1167.94008MR2359313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.