Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Differential approach for the study of duals of algebraic-geometric codes on surfaces

Alain Couvreur (2011)

Journal de Théorie des Nombres de Bordeaux

The purpose of the present article is the study of duals of functional codes on algebraic surfaces. We give a direct geometrical description of them, using differentials. Even if this description is less trivial, it can be regarded as a natural extension to surfaces of the result asserting that the dual of a functional code C L ( D , G ) on a curve is the differential code C Ω ( D , G ) . We study the parameters of such codes and state a lower bound for their minimum distance. Using this bound, one can study some examples...

On the Automorphism Groups of some AG-Codes Based on Ca;b Curves

Shaska, Tanush, Wang, Quanlong (2007)

Serdica Journal of Computing

*Partially supported by NATO.We study Ca,b curves and their applications to coding theory. Recently, Joyner and Ksir have suggested a decoding algorithm based on the automorphisms of the code. We show how Ca;b curves can be used to construct MDS codes and focus on some Ca;b curves with extra automorphisms, namely y^3 = x^4 + 1, y^3 = x^4 - x, y^3 - y = x^4. The automorphism groups of such codes are determined in most characteristics.

On the classification of 3-dimensional non-associative division algebras over p -adic fields

Abdulaziz Deajim, David Grant (2011)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime and K a p -adic field (a finite extension of the field of p -adic numbers p ). We employ the main results in [12] and the arithmetic of elliptic curves over K to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over K to the classification of ternary cubic forms H over K (up to equivalence) with no non-trivial zeros over K . We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian...

On the Construction of Codes from an Asymptotically Good Tower over F8

Caleb McKinley, Shor (2007)

Serdica Journal of Computing

In 2002, van der Geer and van der Vlugt gave explicit equations for an asymptotically good tower of curves over the field F8. In this paper, we will present a method for constructing Goppa codes from these curves as well as explicit constructions for the third level of the tower. The approach is to find an associated plane curve for each curve in the tower and then to use the algorithms of Haché and Le Brigand to find the corresponding Goppa codes.

Currently displaying 1 – 20 of 27

Page 1 Next