Quasi-periodic solutions of Hamiltonian PDEs

Massimiliano Berti[1]

  • [1] Dipartimento di Matematica e Applicazioni “R. Caccioppoli", Università degli Studi Napoli Federico II, Via Cintia, Monte S. Angelo, I-80126, Napoli, Italy

Journées Équations aux dérivées partielles (2011)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
We overview recent existence results and techniques about KAM theory for PDEs.

How to cite

top

Berti, Massimiliano. "Quasi-periodic solutions of Hamiltonian PDEs." Journées Équations aux dérivées partielles (2011): 1-13. <http://eudml.org/doc/219686>.

@article{Berti2011,
abstract = {We overview recent existence results and techniques about KAM theory for PDEs.},
affiliation = {Dipartimento di Matematica e Applicazioni “R. Caccioppoli", Università degli Studi Napoli Federico II, Via Cintia, Monte S. Angelo, I-80126, Napoli, Italy},
author = {Berti, Massimiliano},
journal = {Journées Équations aux dérivées partielles},
keywords = {KAM for PDE; Nash-Moser Theory; Quasi-Periodic Solutions; Small Divisors; Nonlinear Schrödinger and wave equation; Infinite Dimensional Hamiltonian Systems; Journées; Equations aux dérivées partielles; Saint-Jean-De- Monts/France},
language = {fre},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quasi-periodic solutions of Hamiltonian PDEs},
url = {http://eudml.org/doc/219686},
year = {2011},
}

TY - JOUR
AU - Berti, Massimiliano
TI - Quasi-periodic solutions of Hamiltonian PDEs
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - We overview recent existence results and techniques about KAM theory for PDEs.
LA - fre
KW - KAM for PDE; Nash-Moser Theory; Quasi-Periodic Solutions; Small Divisors; Nonlinear Schrödinger and wave equation; Infinite Dimensional Hamiltonian Systems; Journées; Equations aux dérivées partielles; Saint-Jean-De- Monts/France
UR - http://eudml.org/doc/219686
ER -

References

top
  1. Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial differential equations, J. Differential Equations 250, 3379-3397, 2011. Zbl1213.37103MR2772395
  2. Bambusi D., Delort J.M., Grebért B., Szeftel J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60, 11, 1665-1690, 2007. Zbl1170.35481MR2349351
  3. Berti M., Nonlinear Oscillations of Hamiltonian PDEs, Progr. Nonlinear Differential Equations Appl. 74, H. Brézis, ed., Birkhäuser, Boston, 1-181, 2008. Zbl1146.35002MR2345400
  4. Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys, 305, 3, 741-796, 2011. Zbl1230.37092MR2819413
  5. Berti M., Bolle P., Sobolev Periodic solutions of nonlinear wave equations in higher spatial dimension, Archive for Rational Mechanics and Analysis, 195, 609-642, 2010. Zbl1186.35113MR2592290
  6. Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential, to appear on the Journal European Math. Society. Zbl1260.35196
  7. Berti M., Bolle P., Quasi-periodic solutions of nonlinear Schrödinger equations on T d , Rend. Lincei Mat. Appl. 22, 223-236, 2011. Zbl1230.35126MR2813578
  8. Berti M., Bolle P., Procesi M., An abstract Nash-Moser theorem with parameters and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, 2010. Zbl1203.47038MR2580515
  9. Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011. Zbl1260.37045MR2831876
  10. Bourgain J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, no. 11, 1994. Zbl0817.35102MR1316975
  11. Bourgain J., Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal. 5, no. 4, 629-639, 1995. Zbl0834.35083MR1345016
  12. Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters, 4, 445 - 458, 1997. Zbl0897.58020MR1470416
  13. Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of 2 D linear Schrödinger equations, Annals of Math. 148, 363-439, 1998. Zbl0928.35161MR1668547
  14. Bourgain J., Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies 158, Princeton University Press, Princeton, 2005. Zbl1137.35001MR2100420
  15. Burq N., Gérard P., Tzvetkov N., Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159, 187-223, 2005. Zbl1092.35099MR2142336
  16. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Weakly turbolent solutions for the cubic defocusing nonlinear Schrödinger equation, 181, 1, 39-113, Inventiones Math., 2010. Zbl1197.35265MR2651381
  17. Craig W., Wayne C. E., Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993. Zbl0794.35104MR1239318
  18. Delort J.M., Periodic solutions of nonlinear Schrödinger equations: a para-differential approach, to appear in Analysis and PDEs. Zbl1264.35211
  19. Eliasson L.H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Sup. Pisa., 15, 115-147, 1988. Zbl0685.58024MR1001032
  20. Eliasson L. H., Kuksin S., On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys, 286, 125-135, 2009. Zbl1176.35141MR2470926
  21. Eliasson L. H., Kuksin S., KAM for nonlinear Schrödinger equation, Annals of Math., 172, 371-435, 2010. Zbl1201.35177MR2680422
  22. Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987. Zbl0631.34069MR911772
  23. Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and its applications, 19, Oxford University Press, 2000. Zbl0960.35001MR1857574
  24. Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33, 165-174, 1979. Zbl0431.46032MR546504
  25. Procesi C., Procesi M., A normal form for the Schrödinger equation with analytic non-linearities, to appear on Comm. Math. Phys. Zbl1277.35318MR2727802
  26. Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint 2010. 
  27. Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127, 479-528, 1990. Zbl0708.35087MR1040892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.