Quasi-periodic solutions of Hamiltonian PDEs
- [1] Dipartimento di Matematica e Applicazioni “R. Caccioppoli", Università degli Studi Napoli Federico II, Via Cintia, Monte S. Angelo, I-80126, Napoli, Italy
Journées Équations aux dérivées partielles (2011)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBerti, Massimiliano. "Quasi-periodic solutions of Hamiltonian PDEs." Journées Équations aux dérivées partielles (2011): 1-13. <http://eudml.org/doc/219686>.
@article{Berti2011,
abstract = {We overview recent existence results and techniques about KAM theory for PDEs.},
affiliation = {Dipartimento di Matematica e Applicazioni “R. Caccioppoli", Università degli Studi Napoli Federico II, Via Cintia, Monte S. Angelo, I-80126, Napoli, Italy},
author = {Berti, Massimiliano},
journal = {Journées Équations aux dérivées partielles},
keywords = {KAM for PDE; Nash-Moser Theory; Quasi-Periodic Solutions; Small Divisors; Nonlinear Schrödinger and wave equation; Infinite Dimensional Hamiltonian Systems; Journées; Equations aux dérivées partielles; Saint-Jean-De- Monts/France},
language = {fre},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quasi-periodic solutions of Hamiltonian PDEs},
url = {http://eudml.org/doc/219686},
year = {2011},
}
TY - JOUR
AU - Berti, Massimiliano
TI - Quasi-periodic solutions of Hamiltonian PDEs
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - We overview recent existence results and techniques about KAM theory for PDEs.
LA - fre
KW - KAM for PDE; Nash-Moser Theory; Quasi-Periodic Solutions; Small Divisors; Nonlinear Schrödinger and wave equation; Infinite Dimensional Hamiltonian Systems; Journées; Equations aux dérivées partielles; Saint-Jean-De- Monts/France
UR - http://eudml.org/doc/219686
ER -
References
top- Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial differential equations, J. Differential Equations 250, 3379-3397, 2011. Zbl1213.37103MR2772395
- Bambusi D., Delort J.M., Grebért B., Szeftel J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60, 11, 1665-1690, 2007. Zbl1170.35481MR2349351
- Berti M., Nonlinear Oscillations of Hamiltonian PDEs, Progr. Nonlinear Differential Equations Appl. 74, H. Brézis, ed., Birkhäuser, Boston, 1-181, 2008. Zbl1146.35002MR2345400
- Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys, 305, 3, 741-796, 2011. Zbl1230.37092MR2819413
- Berti M., Bolle P., Sobolev Periodic solutions of nonlinear wave equations in higher spatial dimension, Archive for Rational Mechanics and Analysis, 195, 609-642, 2010. Zbl1186.35113MR2592290
- Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on with a multiplicative potential, to appear on the Journal European Math. Society. Zbl1260.35196
- Berti M., Bolle P., Quasi-periodic solutions of nonlinear Schrödinger equations on , Rend. Lincei Mat. Appl. 22, 223-236, 2011. Zbl1230.35126MR2813578
- Berti M., Bolle P., Procesi M., An abstract Nash-Moser theorem with parameters and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, 2010. Zbl1203.47038MR2580515
- Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011. Zbl1260.37045MR2831876
- Bourgain J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, no. 11, 1994. Zbl0817.35102MR1316975
- Bourgain J., Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal. 5, no. 4, 629-639, 1995. Zbl0834.35083MR1345016
- Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters, 4, 445 - 458, 1997. Zbl0897.58020MR1470416
- Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of linear Schrödinger equations, Annals of Math. 148, 363-439, 1998. Zbl0928.35161MR1668547
- Bourgain J., Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies 158, Princeton University Press, Princeton, 2005. Zbl1137.35001MR2100420
- Burq N., Gérard P., Tzvetkov N., Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159, 187-223, 2005. Zbl1092.35099MR2142336
- Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Weakly turbolent solutions for the cubic defocusing nonlinear Schrödinger equation, 181, 1, 39-113, Inventiones Math., 2010. Zbl1197.35265MR2651381
- Craig W., Wayne C. E., Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993. Zbl0794.35104MR1239318
- Delort J.M., Periodic solutions of nonlinear Schrödinger equations: a para-differential approach, to appear in Analysis and PDEs. Zbl1264.35211
- Eliasson L.H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Sup. Pisa., 15, 115-147, 1988. Zbl0685.58024MR1001032
- Eliasson L. H., Kuksin S., On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys, 286, 125-135, 2009. Zbl1176.35141MR2470926
- Eliasson L. H., Kuksin S., KAM for nonlinear Schrödinger equation, Annals of Math., 172, 371-435, 2010. Zbl1201.35177MR2680422
- Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987. Zbl0631.34069MR911772
- Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and its applications, 19, Oxford University Press, 2000. Zbl0960.35001MR1857574
- Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33, 165-174, 1979. Zbl0431.46032MR546504
- Procesi C., Procesi M., A normal form for the Schrödinger equation with analytic non-linearities, to appear on Comm. Math. Phys. Zbl1277.35318MR2727802
- Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint 2010.
- Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127, 479-528, 1990. Zbl0708.35087MR1040892
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.