Perturbations of stable invariant tori for hamiltonian systems
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)
- Volume: 15, Issue: 1, page 115-147
- ISSN: 0391-173X
Access Full Article
topHow to cite
topEliasson, L. H.. "Perturbations of stable invariant tori for hamiltonian systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.1 (1988): 115-147. <http://eudml.org/doc/84022>.
@article{Eliasson1988,
author = {Eliasson, L. H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {small divisor problem; stable invariant tori; stable tori; perturbations},
language = {eng},
number = {1},
pages = {115-147},
publisher = {Scuola normale superiore},
title = {Perturbations of stable invariant tori for hamiltonian systems},
url = {http://eudml.org/doc/84022},
volume = {15},
year = {1988},
}
TY - JOUR
AU - Eliasson, L. H.
TI - Perturbations of stable invariant tori for hamiltonian systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 1
SP - 115
EP - 147
LA - eng
KW - small divisor problem; stable invariant tori; stable tori; perturbations
UR - http://eudml.org/doc/84022
ER -
References
top- [1] V.I. Arnold, Mathematical methods of classical mechanics, Springer (1978). Zbl0386.70001MR690288
- [2] J. Vey, Sur certains systèmes dynamiques séparables, American Journal of Mathematics, 100 (1978), pp. 591-614. Zbl0384.58012MR501141
- [3] A.N. Kolmogorov, The general theory of dynamical systems and classical mechanics, Proc. of the 1954 Intern. Congr. of Math., in R. Abraham, J.E. Marsden, Foundations of mechanics, Benjamin (1978).
- [4] V.I. Arnold, Proof of a theorem of A.N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian, Russian Mathematical Surveys, 18 (1962), No. 5, pp. 9-36. Zbl0129.16606MR163025
- [5] J. Moser, On the theory of quasiperiodic motions, Siam Review8 (1966), pp. 145-172. Zbl0243.34081MR203160
- [6] J. Moser, Convergent series expansions for quasiperiodic motions, Mathematische Annalen, 169 (1967), pp. 136-176. Zbl0149.29903MR208078
- [7] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. I, Paris (1892). JFM30.0834.08
- [8] S. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, Journal of Differential Equations, 15 (1974), pp. 1-69. Zbl0257.34048MR365626
- [9] E. Zehnder, Generalized implicit function theorems with application to some small divisor problems II, Communications on Pure and Applied Mathematics, 29 (1976), pp. 49-111. Zbl0334.58009MR426055
- [10] V.K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Soviet Mathematics Doklady, 6 (1965), pp. 1592-1596. Zbl0143.11801
- [11] V.K. Melnikov, A family of conditionally periodic solutions of a Hamiltonian system, Soviet Mathematics Doklady, 9 (1968), No. 4, pp. 882-885. Zbl0185.17101
- [12] J. Moser - J. Pöschel, An extension of a result by Dinaburg and Sinai on quasiperiodic potentials, Commentarii Mathematici Helvetici, 59 (1984), pp. 39-85. Zbl0533.34023MR743943
- [13] C.L. Charlier, Die Mechanik des Himmels, vol. 2, Leipzig (1907). Zbl38.0949.11JFM38.0949.11
- [14] A.S. Pyartli, Diophantine approximation on submanifolds of euclidean space, Functional Analysis and its Applications, 3 (1969), pp. 303-306. Zbl0216.04401
- [15] H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of the first order with constant coefficients on the torus, Springer, Lecture Notes in Physics, Vol. 38 (1975), pp. 598-624. Zbl0319.35017MR467824
- [16] C.L. Siegel - J. Moser, Lectures on celestial mechanics, Springer (1971). Zbl0312.70017MR502448
Citations in EuDML Documents
top- Raphaël Krikorian, Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts
- Wei-Min Wang, Quasi Periodic Solutions of Nonlinear Random Schrödinger Equations
- Ricardo Pérez-Marco, KAM techniques in PDE
- Massimiliano Berti, Quasi-periodic solutions of Hamiltonian PDEs
- Massimiliano Berti, Quasi-periodic solutions of PDEs
- Jürgen Pöschel, A KAM-theorem for some nonlinear partial differential equations
- P. Duclos, P. Šťovíček, M. Vittot, Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian
- Laurent Stolovitch, A KAM phenomenon for singular holomorphic vector fields
- Mario Ponce, Sur la persistance des courbes invariantes pour les dynamiques holomorphes fibrées lisses
- Massimiliano Berti, Luca Biasco, Enrico Valdinoci, Periodic orbits close to elliptic tori and applications to the three-body problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.