Combinatorial and group-theoretic compactifications of buildings
Pierre-Emmanuel Caprace[1]; Jean Lécureux[2]
- [1] UCLouvain, Département de Mathématiques, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgium)
- [2] Université de Lyon; Université Lyon 1; INSA de Lyon; Ecole Centrale de Lyon; CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 619-672
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCaprace, Pierre-Emmanuel, and Lécureux, Jean. "Combinatorial and group-theoretic compactifications of buildings." Annales de l’institut Fourier 61.2 (2011): 619-672. <http://eudml.org/doc/219688>.
@article{Caprace2011,
abstract = {Let $X$ be a building of arbitrary type. A compactification $\mathscr\{C\}_\{\mathrm\{sph\}\}(X)$ of the set $\text\{Res\}_\{\mathrm\{sph\}\}(X)$ of spherical residues of $X$ is introduced. We prove that it coincides with the horofunction compactification of $\text\{Res\}_\{\mathrm\{sph\}\}(X)$ endowed with a natural combinatorial distance which we call the root-distance. Points of $\mathscr\{C\}_\{\mathrm\{sph\}\}(X)$ admit amenable stabilisers in $\text\{Aut\}(X)$ and conversely, any amenable subgroup virtually fixes a point in $\mathscr\{C\}_\{\mathrm\{sph\}\}(X)$. In addition, it is shown that, provided $\text\{Aut\}(X)$ is transitive enough, this compactification also coincides with the group-theoretic compactification constructed using the Chabauty topology on closed subgroups of $\text\{Aut\}(X)$. This generalises to arbitrary buildings results established by Y. Guivarc’h and B. Rémy [20] in the Bruhat–Tits case.},
affiliation = {UCLouvain, Département de Mathématiques, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgium); Université de Lyon; Université Lyon 1; INSA de Lyon; Ecole Centrale de Lyon; CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex (France)},
author = {Caprace, Pierre-Emmanuel, Lécureux, Jean},
journal = {Annales de l’institut Fourier},
keywords = {Compactification; building; Chabauty topology; amenable group; compactification},
language = {eng},
number = {2},
pages = {619-672},
publisher = {Association des Annales de l’institut Fourier},
title = {Combinatorial and group-theoretic compactifications of buildings},
url = {http://eudml.org/doc/219688},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Caprace, Pierre-Emmanuel
AU - Lécureux, Jean
TI - Combinatorial and group-theoretic compactifications of buildings
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 619
EP - 672
AB - Let $X$ be a building of arbitrary type. A compactification $\mathscr{C}_{\mathrm{sph}}(X)$ of the set $\text{Res}_{\mathrm{sph}}(X)$ of spherical residues of $X$ is introduced. We prove that it coincides with the horofunction compactification of $\text{Res}_{\mathrm{sph}}(X)$ endowed with a natural combinatorial distance which we call the root-distance. Points of $\mathscr{C}_{\mathrm{sph}}(X)$ admit amenable stabilisers in $\text{Aut}(X)$ and conversely, any amenable subgroup virtually fixes a point in $\mathscr{C}_{\mathrm{sph}}(X)$. In addition, it is shown that, provided $\text{Aut}(X)$ is transitive enough, this compactification also coincides with the group-theoretic compactification constructed using the Chabauty topology on closed subgroups of $\text{Aut}(X)$. This generalises to arbitrary buildings results established by Y. Guivarc’h and B. Rémy [20] in the Bruhat–Tits case.
LA - eng
KW - Compactification; building; Chabauty topology; amenable group; compactification
UR - http://eudml.org/doc/219688
ER -
References
top- Peter Abramenko, Kenneth S. Brown, Buildings, 248 (2008), Springer, New York Zbl1214.20033MR2439729
- C. Anantharaman-Delaroche, J. Renault, Amenable groupoids, 36 (2000), L’Enseignement Mathématique, Geneva Zbl0960.43003MR1799683
- Werner Ballmann, Mikhaïl Gromov, Viktor Schroeder, Manifolds of nonpositive curvature, 61 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0591.53001MR823981
- Andreas Balser, Alexander Lytchak, Centers of convex subsets of buildings, Ann. Global Anal. Geom. 28 (2005), 201-209 Zbl1082.53032MR2180749
- Armand Borel, Lizhen Ji, Compactifications of symmetric and locally symmetric spaces, (2006), Birkhäuser Boston Inc., Boston, MA Zbl1100.22001MR2189882
- Nicolas Bourbaki, Groupes et Algèbres de Lie, Chapitre IV-VI, (2007), Springer-Verlag
- Nicolas Bourbaki, Intégration, Chapitre VIII, (2007), Springer-Verlag
- Martin R. Bridson, André Haefliger, Metric spaces of non-positive curvature, 319 (1999), Springer-Verlag, Berlin Zbl0988.53001MR1744486
- J. Brodzki, S. J. Campbell, E. Guentner, G. Niblo, N. J. Wright, Property A and CAT(0) Cube Complexes Zbl1233.20036
- Kenneth S. Brown, Buildings, (1989), Springer-Verlag, New York Zbl0922.20033MR969123
- F. Bruhat, Jacques Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251 Zbl0254.14017MR327923
- Pierre-Emmanuel Caprace, Amenable groups and Hadamard spaces with a totally disconnected isometry group, Comment. Math. Helv. 84 (2009), 437-455 Zbl1233.20037MR2495801
- Pierre-Emmanuel Caprace, Frederic Haglund, On geometric flats in the realization of Coxeter groups and Tits buildings, Canad. J. Math. 61 (2009), 740-761 Zbl1231.20034MR2541383
- Pierre-Emmanuel Caprace, Alexander Lytchak, At infinity of finite-dimensional CAT(0) spaces, Math. Ann. 346 (2010), 1-21 Zbl1184.53038MR2558883
- Michael W. Davis, Buildings are , Geometry and cohomology in group theory (Durham, 1994) 252 (1998), 108-123, Cambridge Univ. Press, Cambridge Zbl0978.51005MR1709955
- Vinay V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel) 53 (1989), 543-546 Zbl0688.20028MR1023969
- B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 810-840 Zbl0985.20027MR1650094
- Étienne Ghys, Pierre de la Harpe, L’action au bord des isométries, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) 83 (1990), 135-163, Birkhäuser Boston, Boston, MA Zbl0731.20025
- Yves Guivarc’h, Lizhen Ji, J. C. Taylor, Compactifications of symmetric spaces, 156 (1998), Birkhäuser Boston Inc., Boston, MA Zbl1053.31006MR1633171
- Yves Guivarc’h, Bertrand Rémy, Group-theoretic compactification of Bruhat-Tits buildings, Annales scientifiques de l’ENS 39 (2006), 871-920 Zbl1126.20029MR2316977
- Dan Guralnick, Coarse decompositions for boundaries of CAT(0) groups, (2008)
- G. Christopher Hruska, Bruce Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005), 1501-1538 (electronic) Zbl1087.20034MR2175151
- Svetlana Katok, Fuchsian groups, (1992), University of Chicago Press, Chicago, IL Zbl0753.30001MR1177168
- Benoît Kloeckner, The space of closed subgroups of is stratified and simply connected, J. Topol. 2 (2009), 570-588 Zbl1187.22010MR2546586
- Erasmus Landvogt, A compactification of the Bruhat-Tits building, 1619 (1996), Springer-Verlag, Berlin Zbl0935.20034MR1441308
- Bernhard Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, (2000), Universität Bonn Mathematisches Institut, Bonn Zbl1005.53031MR1934160
- Mark Ronan, Lectures on buildings, 7 (1989), Academic Press Inc., Boston, MA Zbl0694.51001MR1005533
- Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, (1977), U.E.R. Mathématique, Université Paris XI, Orsay Zbl0412.22006MR491992
- L. C. Siebenmann, Deformation of homeomorphisms on stratified sets. I, II, Comment. Math. Helv. 47 (1972), 123-136; ibid. 47 (1972), 137–163 Zbl0252.57012MR319207
- Jacques Tits, Buildings of spherical type and finite BN-pairs, (1974), Springer-Verlag, Berlin Zbl0295.20047MR470099
- Jacques Tits, A local approach to buildings, The geometric vein (1981), 519-547, Springer, New York Zbl0496.51001MR661801
- George Willis, Totally disconnected groups and proofs of conjectures of Hofmann and Mukherjea, Bull. Austral. Math. Soc. 51 (1995), 489-494 Zbl0832.22005MR1331442
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.