L 2 discrepancy of generalized Zaremba point sets

Henri Faure[1]; Friedrich Pillichshammer[2]

  • [1] Institut de Mathématiques de Luminy, U.M.R. 6206 CNRS 163 avenue de Luminy, case 907 13288 Marseille Cedex 09, France
  • [2] Institut für Finanzmathematik, Universität Linz Altenbergerstraße 69 A-4040 Linz, Austria

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 121-136
  • ISSN: 1246-7405

Abstract

top
We give an exact formula for the L 2 discrepancy of a class of generalized two-dimensional Hammersley point sets in base b , namely generalized Zaremba point sets. These point sets are digitally shifted Hammersley point sets with an arbitrary number of different digital shifts in base b . The Zaremba point set introduced by White in 1975 is the special case where the b shifts are taken repeatedly in sequential order, hence needing at least b b points to obtain the optimal order of L 2 discrepancy. On the contrary, our study shows that only one non-zero shift is enough for the same purpose, whatever the base b is.

How to cite

top

Faure, Henri, and Pillichshammer, Friedrich. "$L_2$ discrepancy of generalized Zaremba point sets." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 121-136. <http://eudml.org/doc/219693>.

@article{Faure2011,
abstract = {We give an exact formula for the $L_2$ discrepancy of a class of generalized two-dimensional Hammersley point sets in base $b$, namely generalized Zaremba point sets. These point sets are digitally shifted Hammersley point sets with an arbitrary number of different digital shifts in base $b$. The Zaremba point set introduced by White in 1975 is the special case where the $b$ shifts are taken repeatedly in sequential order, hence needing at least $b^b$ points to obtain the optimal order of $L_2$ discrepancy. On the contrary, our study shows that only one non-zero shift is enough for the same purpose, whatever the base $b$ is.},
affiliation = {Institut de Mathématiques de Luminy, U.M.R. 6206 CNRS 163 avenue de Luminy, case 907 13288 Marseille Cedex 09, France; Institut für Finanzmathematik, Universität Linz Altenbergerstraße 69 A-4040 Linz, Austria},
author = {Faure, Henri, Pillichshammer, Friedrich},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Discrepancy; discrepancy; Hammersley point sets, Zaremba point sets; digitally shifted point sets},
language = {eng},
month = {3},
number = {1},
pages = {121-136},
publisher = {Société Arithmétique de Bordeaux},
title = {$L_2$ discrepancy of generalized Zaremba point sets},
url = {http://eudml.org/doc/219693},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Faure, Henri
AU - Pillichshammer, Friedrich
TI - $L_2$ discrepancy of generalized Zaremba point sets
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 121
EP - 136
AB - We give an exact formula for the $L_2$ discrepancy of a class of generalized two-dimensional Hammersley point sets in base $b$, namely generalized Zaremba point sets. These point sets are digitally shifted Hammersley point sets with an arbitrary number of different digital shifts in base $b$. The Zaremba point set introduced by White in 1975 is the special case where the $b$ shifts are taken repeatedly in sequential order, hence needing at least $b^b$ points to obtain the optimal order of $L_2$ discrepancy. On the contrary, our study shows that only one non-zero shift is enough for the same purpose, whatever the base $b$ is.
LA - eng
KW - Discrepancy; discrepancy; Hammersley point sets, Zaremba point sets; digitally shifted point sets
UR - http://eudml.org/doc/219693
ER -

References

top
  1. H. Chaix and H. Faure, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993), 103–141. Zbl0772.11022MR1206080
  2. W .W .L .Chen and M. M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545 (2002), 67–95. Zbl1083.11049MR1896098
  3. W .W .L .Chen and M. M. Skriganov, Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution. In Diophantine approximation, Dev. Math. 16, 141–159, Springer, New York Vienna, 2008. Zbl1233.11082MR2487691
  4. H. Davenport, Note on irregularities of distribution. Mathematika 3 (1956), 131–135. Zbl0073.03402MR82531
  5. J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010. Zbl1282.65012MR2683394
  6. H. Faure, Discrépance de suites associées à un système de numération (en dimension un). Bull. Soc. Math. France 109 (1981), 143–182. Zbl0488.10052MR623787
  7. H. Faure and F. Pillichshammer, L p discrepancy of generalized two-dimensional Hammersley point sets. Monatsh. Math. 158 ( 2009), 31–61. Zbl1175.11042MR2525920
  8. H. Faure and F. Pillichshammer, L 2 discrepancy of two-dimensional digitally shifted Hammersley point sets in base b . In Monte Carlo and Quasi-Monte Carlo Methods 2008, P. L’Ecuyer and A. Owen (eds.), 355–368, Springer-Verlag, Berlin Heidelberg, 2009. Zbl1228.11122
  9. H. Faure, F. Pillichshammer, G. Pirsic and W. Ch. Schmid, L 2 discrepancy of generalized two-dimensional Hammersley point sets scrambled with arbitrary permutations. Acta. Arith. 141 (2010), 395–418. Zbl1198.11072MR2587295
  10. J.H. Halton and S.K. Zaremba, The extreme and the L 2 discrepancies of some plane sets. Monatsh. Math. 73 (1969), 316–328. Zbl0183.31401MR252329
  11. P. Kritzer and F. Pillichshammer, An exact formula for the L 2 discrepancy of the shifted Hammersley point set. Uniform Distribution Theory 1 (2006), 1–13. Zbl1147.11041MR2314263
  12. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974; reprint, Dover Publications, Mineola, NY, 2006. Zbl0281.10001MR419394
  13. G. Larcher and F. Pillichshammer, Walsh series analysis of the L 2 -discrepancy of symmetrisized point sets. Monatsh. Math. 132 (2001), 1–18. Zbl1108.11309MR1825715
  14. F. Pillichshammer, On the L p -discrepancy of the Hammersley point set. Monatsh. Math. 136 (2002), 67–79. Zbl1010.11043MR1908081
  15. P. D. Proinov, Symmetrization of the van der Corput generalized sequences. Proc. Japan Acad. 64 (1988), Ser. A, 159–162. Zbl0654.10049MR965955
  16. K.F. Roth, On irregularities of distribution. Mathematika 1 (1954), 73–79. Zbl0057.28604MR66435
  17. I.V. Vilenkin, Plane nets of Integration. Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 189–196. (English translation in: U.S.S.R. Computational Math. and Math. Phys. 7 (1) (1967), 258–267.) Zbl0187.10701MR205464
  18. B.E. White, Mean-square discrepancies of the Hammersley and Zaremba sequences for arbitrary radix. Monatsh. Math. 80 (1975), 219–229. Zbl0322.65002MR417102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.