Ramification and moduli spaces of finite flat models
Naoki Imai[1]
- [1] Kyoto University Research Institute for Mathematical Sciences Kyoto 606-8502 (Japan)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 1943-1975
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topImai, Naoki. "Ramification and moduli spaces of finite flat models." Annales de l’institut Fourier 61.5 (2011): 1943-1975. <http://eudml.org/doc/219699>.
@article{Imai2011,
abstract = {We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.},
affiliation = {Kyoto University Research Institute for Mathematical Sciences Kyoto 606-8502 (Japan)},
author = {Imai, Naoki},
journal = {Annales de l’institut Fourier},
keywords = {Group scheme; moduli space; $p$-adic field; group scheme; -adic field},
language = {eng},
number = {5},
pages = {1943-1975},
publisher = {Association des Annales de l’institut Fourier},
title = {Ramification and moduli spaces of finite flat models},
url = {http://eudml.org/doc/219699},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Imai, Naoki
TI - Ramification and moduli spaces of finite flat models
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1943
EP - 1975
AB - We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.
LA - eng
KW - Group scheme; moduli space; $p$-adic field; group scheme; -adic field
UR - http://eudml.org/doc/219699
ER -
References
top- Naoki Imai, On the connected components of moduli spaces of finite flat models, Amer. J. of Math. 132 (2010), 1189-1204 Zbl1205.14025MR2732343
- Mark Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), 1085-1180 Zbl1201.14034MR2600871
- Michel Raynaud, Schémas en groupes de type , Bull. Soc. Math. France 102 (1974), 241-280 Zbl0325.14020MR419467
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.