A Lemma on Highly Ramified ...-Factors.
We extend Prasad’s results on the existence of trilinear forms on representations of of a local field, by permitting one or more of the representations to be reducible principal series, with infinite-dimensional irreducible quotient. We apply this in a global setting to compute (unconditionally) the dimensions of the subspaces of motivic cohomology of the product of two modular curves constructed by Beilinson.
Dans ce travail nous développons un analogue relatif de la théorie de Sen pour les -représentations. On donne des applications à la théorie des représentations -adiques, en la reliant à la théorie des -modules relatifs, et à celle des modules de Higgs -adiques développée par G. Faltings.
Let be two different prime numbers, let be a local non archimedean field of residual characteristic , and let be an algebraic closure of the field of -adic numbers , the ring of integers of , the residual field of . We proved the existence and the unicity of a Langlands local correspondence over for all , compatible with the reduction modulo in [V5], without using and factors of pairs. We conjecture that the Langlands local correspondence over respects congruences modulo between...
Let be a finite field extension. The Langlands correspondence gives a canonical bijection between the set of equivalence classes of irreducible -dimensional representations of the Weil group of and the set of equivalence classes of irreducible supercuspidal representations of GL. This paper is concerned with the case where . In earlier work, the authors constructed an explicit bijection using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured...