Number of singular points of an annulus in
Maciej Borodzik[1]; Henryk Zołądek[2]
- [1] University of Warsaw Institute of Mathematics ul. Banacha 2 02-097 Warsaw (Poland)
- [2] Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1539-1555
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBorodzik, Maciej, and Zołądek, Henryk. "Number of singular points of an annulus in $\mathbb{C}^2$." Annales de l’institut Fourier 61.4 (2011): 1539-1555. <http://eudml.org/doc/219700>.
@article{Borodzik2011,
abstract = {Using BMY inequality and a Milnor number bound we prove that any algebraic annulus $\{\mathbb\{C\}\}^\{*\}$ in $\{\mathbb\{C\}\}^2$ with no self-intersections can have at most three cuspidal singularities.},
affiliation = {University of Warsaw Institute of Mathematics ul. Banacha 2 02-097 Warsaw (Poland); Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland},
author = {Borodzik, Maciej, Zołądek, Henryk},
journal = {Annales de l’institut Fourier},
keywords = {Annulus; cuspidal singular point; codimension; algebraic curve; annulus; singularity; Milnor number},
language = {eng},
number = {4},
pages = {1539-1555},
publisher = {Association des Annales de l’institut Fourier},
title = {Number of singular points of an annulus in $\mathbb\{C\}^2$},
url = {http://eudml.org/doc/219700},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Borodzik, Maciej
AU - Zołądek, Henryk
TI - Number of singular points of an annulus in $\mathbb{C}^2$
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1539
EP - 1555
AB - Using BMY inequality and a Milnor number bound we prove that any algebraic annulus ${\mathbb{C}}^{*}$ in ${\mathbb{C}}^2$ with no self-intersections can have at most three cuspidal singularities.
LA - eng
KW - Annulus; cuspidal singular point; codimension; algebraic curve; annulus; singularity; Milnor number
UR - http://eudml.org/doc/219700
ER -
References
top- Shreeram S. Abhyankar, Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166 Zbl0332.14004MR379502
- Maciej Borodzik, Number of singular points of a genus curve with one place at infinity
- Maciej Borodzik, Henryk Żołądek, Complex algebraic plane curves via the Poincaré-Hopf formula. I. Parametric lines, Pacific J. Math. 229 (2007), 307-338 Zbl1153.14026MR2276513
- Maciej Borodzik, Henryk Żołądek, Complex algebraic plane curves via Poincaré-Hopf formula. III. Codimension bounds, J. Math. Kyoto Univ. 48 (2008), 529-570 Zbl1174.14028MR2511050
- Maciej Borodzik, Henryk Żołądek, Complex algebraic plane curves via Poincaré-Hopf formula. II. Annuli, Israel J. Math. 175 (2010), 301-347 Zbl1202.14031MR2607548
- Pierrette Cassou-Nogues, Mariusz Koras, Peter Russell, Closed embeddings of in . I, J. Algebra 322 (2009), 2950-3002 Zbl1218.14019MR2567406
- Hubert Flenner, M. G. Zaĭdenberg, -acyclic surfaces and their deformations, Classification of algebraic varieties (L’Aquila, 1992) 162 (1994), 143-208, Amer. Math. Soc., Providence, RI Zbl0838.14027MR1272698
- S. Yu. Orevkov, On rational cuspidal curves. I. Sharp estimate for degree via multiplicities, Math. Ann. 324 (2002), 657-673 Zbl1014.14010MR1942244
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace , J. Math. Soc. Japan 26 (1974), 241-257 Zbl0276.14001MR338423
- Isao Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in , Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), 157-162 Zbl0404.14009MR498590
- M. G. Zaĭdenberg, V. Ya. Lin, An irreducible, simply connected algebraic curve in is equivalent to a quasihomogeneous curve, Dokl. Akad. Nauk SSSR 271 (1983), 1048-1052 Zbl0564.14014MR722017
- M. G. Zaĭdenberg, V. Ya. Lin, Linear and complex analysis problem book, 1043 (1984), 662-663, Springer-Verlag, Berlin
- M. G. Zaĭdenberg, S. Yu. Orevkov, Some estimates for plane cuspidal curves, (1993)
- M. G. Zaĭdenberg, S. Yu. Orevkov, On the number of singular points of complex plane curves, (1995)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.