A new characterization of the analytic surfaces in that satisfy the local Phragmén-Lindelöf condition
Rüdiger W. Braun[1]; Reinhold Meise[2]; B. A. Taylor[3]
- [1] Mathematisches Institut, Heinrich-Heine-Universität Universitätsstraße 1, 40225 Düsseldorf, Germany
- [2] Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
- [3] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: S2, page 71-99
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBraun, Rüdiger W., Meise, Reinhold, and Taylor, B. A.. "A new characterization of the analytic surfaces in $\mathbb{C}^3$ that satisfy the local Phragmén-Lindelöf condition." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 71-99. <http://eudml.org/doc/219702>.
@article{Braun2011,
abstract = {We prove that an analytic surface $V$ in a neighborhood of the origin in $\mathbb\{C\}^3$ satisfies the local Phragmén-Lindelöf condition $\mathop \{\rm PL\}_\{\{\rm loc\}\}$ at the origin if and only if $V$ satisfies the following two conditions: (1) $V$ is nearly hyperbolic; (2) for each real simple curve $\gamma $ in $\mathbb\{R\}^3$ and each $d \ge 1$, the (algebraic) limit variety $T_\{\gamma ,d\}V$ satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure $k$-dimensional analytic variety $V$ to satisify $\mathop \{\rm PL\}_\{\{\rm loc\}\}$.},
affiliation = {Mathematisches Institut, Heinrich-Heine-Universität Universitätsstraße 1, 40225 Düsseldorf, Germany; Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.},
author = {Braun, Rüdiger W., Meise, Reinhold, Taylor, B. A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {analytic surfaces; Phragmén-Lindelöf condition; algebraic limit varieties; local hyperbolicity},
language = {eng},
month = {4},
number = {S2},
pages = {71-99},
publisher = {Université Paul Sabatier, Toulouse},
title = {A new characterization of the analytic surfaces in $\mathbb\{C\}^3$ that satisfy the local Phragmén-Lindelöf condition},
url = {http://eudml.org/doc/219702},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Braun, Rüdiger W.
AU - Meise, Reinhold
AU - Taylor, B. A.
TI - A new characterization of the analytic surfaces in $\mathbb{C}^3$ that satisfy the local Phragmén-Lindelöf condition
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 71
EP - 99
AB - We prove that an analytic surface $V$ in a neighborhood of the origin in $\mathbb{C}^3$ satisfies the local Phragmén-Lindelöf condition $\mathop {\rm PL}_{{\rm loc}}$ at the origin if and only if $V$ satisfies the following two conditions: (1) $V$ is nearly hyperbolic; (2) for each real simple curve $\gamma $ in $\mathbb{R}^3$ and each $d \ge 1$, the (algebraic) limit variety $T_{\gamma ,d}V$ satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure $k$-dimensional analytic variety $V$ to satisify $\mathop {\rm PL}_{{\rm loc}}$.
LA - eng
KW - analytic surfaces; Phragmén-Lindelöf condition; algebraic limit varieties; local hyperbolicity
UR - http://eudml.org/doc/219702
ER -
References
top- Braun (R. W.), Meise (R.), Taylor (B. A.).— The algebraic varieties on which the classical Phragmén-Lindelöf estimate holds for plurisubharmonic functions, Math. Z., 232, p. 103-135 (1999). Zbl0933.32047MR1714282
- Braun (R. W.), Meise (R.), Taylor (B. A.).— Local radial Phragmén-Lindelöf estimates for plurisubharmonic functions on analytic varieties, Proc. Amer. Math. Soc., 131, p. 2423-2433 (2002). Zbl1023.32018MR1974640
- Braun (R. W.), Meise (R.), Taylor (B. A.).— Higher order tangents to analytic varieties along curves, Canad. J. Math., 55, p. 64-90 (2003). Zbl1030.32008MR1952326
- Braun (R. W.), Meise (R.), Taylor (B. A.).— Perturbation results for the local Phragmen-Lindeloef condition and stable homogeneous polynomials, Rev. R. Acad. Cien. Serie A. Mat. 97, p. 189-208 (2003). Zbl1061.32026MR2068173
- Braun (R. W.), Meise (R.), Taylor (B. A.).— The geometry of analytic varieties satisfying the local Phragmén-Lindelöf condition and a geometric characterization of partial differential operators that are surjective on , Trans. Amer. Math. Soc., 365, p. 1315-1383 (2004). Zbl1039.32010MR2034311
- Braun (R. W.), Meise (R.), Taylor (B. A.).— Nearly Hyperbolic Varieties and Phragmén-Lindelöf Conditions, p. 81-95, in “Harmonic Analysis, Signal Processing, and Complexity”, I. Sabadini, D. C. Struppa, D.F. Walnut (Eds.), Progress in Mathematics, 238 (2005). Zbl1089.32030MR2174311
- Braun (R. W.), Meise (R.), Taylor (B. A.).— The algebraic surfaces on which the classical Phragmén-Lindelöf theorem holds, Math. Z., 253, p. 387-417 (2006). Zbl1096.31003MR2218707
- Chirka (E. M.).— Complex Analytic sets. Kluver, Dordrecht (1989). Zbl0683.32002MR1111477
- Heinrich (T.).— A new necessary condition for analytic varieties satisfying the local Phragmén-Lindelöf condition, Ann. Polon. Math., 85, p. 283-290 (2005). Zbl1088.31004MR2181757
- Heinrich (T.).— Eine geometrische Charakterisierung des lokalen Phragmén-Lindelöf Prinzips für algebraische Flächen in . Dissertation, Düsseldorf, 2008. Electronic version http//deposit.ddb.de/cgi-bin/dokserv?idn=989795861.
- Hörmander (L.).— On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21, p. 151-183 (1973). Zbl0282.35015MR336041
- Meise (R.), Taylor (B. A.).— Phragmén-Lindelöf conditions for graph varieties, Result. Math., 36, p. 121-148 (1999). Zbl0941.32032MR1706532
- Meise (R.), Taylor (B. A.), Vogt (D.).— Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, 40, p. 619-655 (1990). Zbl0703.46025MR1091835
- Meise (R.), Taylor (B. A.), Vogt (D.).— Extremal plurisubharmonic functions of linear growth on algebraic varieties, Math. Z., 219, p. 515-537 (1995). Zbl0835.32008MR1343660
- Meise (R.), Taylor (B. A.), Vogt (D.).— Phragmén-Lindelöf principles for algebraic varieties, J. of the Amer. Math. Soc., 11, p. 1-39 (1998). Zbl0896.32008MR1458816
- Vogt (D.).— Extension operators for real analytic functions on compact subvarieties of , J. Reine Angew. Math., 606, p. 217-233 (2007). Zbl1133.46014MR2337649
- Whitney (W.).— ‘Complex analytic varieties’, Addison-Wesley Pub. Co. (1972). Zbl0265.32008MR387634
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.