A new characterization of the analytic surfaces in 3 that satisfy the local Phragmén-Lindelöf condition

Rüdiger W. Braun[1]; Reinhold Meise[2]; B. A. Taylor[3]

  • [1] Mathematisches Institut, Heinrich-Heine-Universität  Universitätsstraße 1, 40225 Düsseldorf, Germany
  • [2] Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
  • [3] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: S2, page 71-99
  • ISSN: 0240-2963

Abstract

top
We prove that an analytic surface V in a neighborhood of the origin in 3 satisfies the local Phragmén-Lindelöf condition PL loc at the origin if and only if V satisfies the following two conditions: (1) V is nearly hyperbolic; (2) for each real simple curve γ in 3 and each d 1 , the (algebraic) limit variety T γ , d V satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure k -dimensional analytic variety V to satisify PL loc .

How to cite

top

Braun, Rüdiger W., Meise, Reinhold, and Taylor, B. A.. "A new characterization of the analytic surfaces in $\mathbb{C}^3$ that satisfy the local Phragmén-Lindelöf condition." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 71-99. <http://eudml.org/doc/219702>.

@article{Braun2011,
abstract = {We prove that an analytic surface $V$ in a neighborhood of the origin in $\mathbb\{C\}^3$ satisfies the local Phragmén-Lindelöf condition $\mathop \{\rm PL\}_\{\{\rm loc\}\}$ at the origin if and only if $V$ satisfies the following two conditions: (1) $V$ is nearly hyperbolic; (2) for each real simple curve $\gamma $ in $\mathbb\{R\}^3$ and each $d \ge 1$, the (algebraic) limit variety $T_\{\gamma ,d\}V$ satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure $k$-dimensional analytic variety $V$ to satisify $\mathop \{\rm PL\}_\{\{\rm loc\}\}$.},
affiliation = {Mathematisches Institut, Heinrich-Heine-Universität  Universitätsstraße 1, 40225 Düsseldorf, Germany; Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.},
author = {Braun, Rüdiger W., Meise, Reinhold, Taylor, B. A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {analytic surfaces; Phragmén-Lindelöf condition; algebraic limit varieties; local hyperbolicity},
language = {eng},
month = {4},
number = {S2},
pages = {71-99},
publisher = {Université Paul Sabatier, Toulouse},
title = {A new characterization of the analytic surfaces in $\mathbb\{C\}^3$ that satisfy the local Phragmén-Lindelöf condition},
url = {http://eudml.org/doc/219702},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Braun, Rüdiger W.
AU - Meise, Reinhold
AU - Taylor, B. A.
TI - A new characterization of the analytic surfaces in $\mathbb{C}^3$ that satisfy the local Phragmén-Lindelöf condition
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 71
EP - 99
AB - We prove that an analytic surface $V$ in a neighborhood of the origin in $\mathbb{C}^3$ satisfies the local Phragmén-Lindelöf condition $\mathop {\rm PL}_{{\rm loc}}$ at the origin if and only if $V$ satisfies the following two conditions: (1) $V$ is nearly hyperbolic; (2) for each real simple curve $\gamma $ in $\mathbb{R}^3$ and each $d \ge 1$, the (algebraic) limit variety $T_{\gamma ,d}V$ satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure $k$-dimensional analytic variety $V$ to satisify $\mathop {\rm PL}_{{\rm loc}}$.
LA - eng
KW - analytic surfaces; Phragmén-Lindelöf condition; algebraic limit varieties; local hyperbolicity
UR - http://eudml.org/doc/219702
ER -

References

top
  1. Braun (R. W.), Meise (R.), Taylor (B. A.).— The algebraic varieties on which the classical Phragmén-Lindelöf estimate holds for plurisubharmonic functions, Math. Z., 232, p. 103-135 (1999).  Zbl0933.32047MR1714282
  2. Braun (R. W.), Meise (R.), Taylor (B. A.).— Local radial Phragmén-Lindelöf estimates for plurisubharmonic functions on analytic varieties, Proc. Amer. Math. Soc., 131, p. 2423-2433 (2002). Zbl1023.32018MR1974640
  3. Braun (R. W.), Meise (R.), Taylor (B. A.).— Higher order tangents to analytic varieties along curves, Canad. J. Math., 55, p. 64-90 (2003). Zbl1030.32008MR1952326
  4. Braun (R. W.), Meise (R.), Taylor (B. A.).— Perturbation results for the local Phragmen-Lindeloef condition and stable homogeneous polynomials, Rev. R. Acad. Cien. Serie A. Mat. 97, p. 189-208 (2003).  Zbl1061.32026MR2068173
  5. Braun (R. W.), Meise (R.), Taylor (B. A.).— The geometry of analytic varieties satisfying the local Phragmén-Lindelöf condition and a geometric characterization of partial differential operators that are surjective on 𝒜 ( 4 ) , Trans. Amer. Math. Soc., 365, p. 1315-1383 (2004). Zbl1039.32010MR2034311
  6. Braun (R. W.), Meise (R.), Taylor (B. A.).— Nearly Hyperbolic Varieties and Phragmén-Lindelöf Conditions, p. 81-95, in “Harmonic Analysis, Signal Processing, and Complexity”, I. Sabadini, D. C. Struppa, D.F. Walnut (Eds.), Progress in Mathematics, 238 (2005). Zbl1089.32030MR2174311
  7. Braun (R. W.), Meise (R.), Taylor (B. A.).— The algebraic surfaces on which the classical Phragmén-Lindelöf theorem holds, Math. Z., 253, p. 387-417 (2006). Zbl1096.31003MR2218707
  8. Chirka (E. M.).— Complex Analytic sets. Kluver, Dordrecht (1989). Zbl0683.32002MR1111477
  9. Heinrich (T.).— A new necessary condition for analytic varieties satisfying the local Phragmén-Lindelöf condition, Ann. Polon. Math., 85, p. 283-290 (2005). Zbl1088.31004MR2181757
  10. Heinrich (T.).— Eine geometrische Charakterisierung des lokalen Phragmén-Lindelöf Prinzips für algebraische Flächen in n . Dissertation, Düsseldorf, 2008. Electronic version http//deposit.ddb.de/cgi-bin/dokserv?idn=989795861. 
  11. Hörmander (L.).— On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21, p. 151-183 (1973). Zbl0282.35015MR336041
  12. Meise (R.), Taylor (B. A.).— Phragmén-Lindelöf conditions for graph varieties, Result. Math., 36, p. 121-148 (1999). Zbl0941.32032MR1706532
  13. Meise (R.), Taylor (B. A.), Vogt (D.).— Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, 40, p. 619-655 (1990). Zbl0703.46025MR1091835
  14. Meise (R.), Taylor (B. A.), Vogt (D.).— Extremal plurisubharmonic functions of linear growth on algebraic varieties, Math. Z., 219, p. 515-537 (1995). Zbl0835.32008MR1343660
  15. Meise (R.), Taylor (B. A.), Vogt (D.).— Phragmén-Lindelöf principles for algebraic varieties, J. of the Amer. Math. Soc., 11, p. 1-39 (1998). Zbl0896.32008MR1458816
  16. Vogt (D.).— Extension operators for real analytic functions on compact subvarieties of d , J. Reine Angew. Math., 606, p. 217-233 (2007). Zbl1133.46014MR2337649
  17. Whitney (W.).— ‘Complex analytic varieties’, Addison-Wesley Pub. Co. (1972). Zbl0265.32008MR387634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.