A Galois D -groupoid for q -difference equations

Anne Granier[1]

  • [1] Ruprecht-Karls-Universität Heidelberg Mathematics Center of Heidelberg (MATCH) & Interdisciplinary Center for Scientific Computing (IWR) Im Neuenheimer Feld 368 69120 Heidelberg (Germany)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1493-1516
  • ISSN: 0373-0956

Abstract

top
We first recall Malgrange’s definition of D -groupoid and we define a Galois D -groupoid for q -difference equations. Then, we compute explicitly the Galois D -groupoid of a constant linear q -difference system, and show that it corresponds to the q -difference Galois group. Finally, we establish a conjugation between the Galois D -groupoids of two equivalent constant linear q -difference systems, and define a local Galois D -groupoid for Fuchsian linear q -difference systems by giving its realizations.

How to cite

top

Granier, Anne. "A Galois $D$-groupoid for $q$-difference equations." Annales de l’institut Fourier 61.4 (2011): 1493-1516. <http://eudml.org/doc/219704>.

@article{Granier2011,
abstract = {We first recall Malgrange’s definition of $D$-groupoid and we define a Galois $D$-groupoid for $q$-difference equations. Then, we compute explicitly the Galois $D$-groupoid of a constant linear $q$-difference system, and show that it corresponds to the $q$-difference Galois group. Finally, we establish a conjugation between the Galois $D$-groupoids of two equivalent constant linear $q$-difference systems, and define a local Galois $D$-groupoid for Fuchsian linear $q$-difference systems by giving its realizations.},
affiliation = {Ruprecht-Karls-Universität Heidelberg Mathematics Center of Heidelberg (MATCH) & Interdisciplinary Center for Scientific Computing (IWR) Im Neuenheimer Feld 368 69120 Heidelberg (Germany)},
author = {Granier, Anne},
journal = {Annales de l’institut Fourier},
keywords = {Malgrange’s $D$-groupoids; $q$-difference equations; $q$-difference Galois groups; Malgrange’s -groupoids; -difference equations; -difference Galois groups; Fuchsian linear -difference systems},
language = {eng},
number = {4},
pages = {1493-1516},
publisher = {Association des Annales de l’institut Fourier},
title = {A Galois $D$-groupoid for $q$-difference equations},
url = {http://eudml.org/doc/219704},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Granier, Anne
TI - A Galois $D$-groupoid for $q$-difference equations
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1493
EP - 1516
AB - We first recall Malgrange’s definition of $D$-groupoid and we define a Galois $D$-groupoid for $q$-difference equations. Then, we compute explicitly the Galois $D$-groupoid of a constant linear $q$-difference system, and show that it corresponds to the $q$-difference Galois group. Finally, we establish a conjugation between the Galois $D$-groupoids of two equivalent constant linear $q$-difference systems, and define a local Galois $D$-groupoid for Fuchsian linear $q$-difference systems by giving its realizations.
LA - eng
KW - Malgrange’s $D$-groupoids; $q$-difference equations; $q$-difference Galois groups; Malgrange’s -groupoids; -difference equations; -difference Galois groups; Fuchsian linear -difference systems
UR - http://eudml.org/doc/219704
ER -

References

top
  1. Guy Casale, D -enveloppe d’un difféomorphisme de ( , 0 ) , Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), 515-538 Zbl1084.37036MR2116815
  2. Guy Casale, Enveloppe galoisienne d’une application rationnelle de 1 , Publ. Mat. 50 (2006), 191-202 Zbl1137.37022MR2325017
  3. David Cox, John Little, Donal O’Shea, Ideals, varieties, and algorithms, (2007), Springer, New York Zbl1118.13001MR2290010
  4. Roger Godement, Topologie algébrique et théorie des faisceaux, (1973), Hermann, Paris Zbl0275.55010MR345092
  5. Anne Granier, Un D -groupoïde de Galois pour les équations aux q -différences, (2009) 
  6. Christian Houzel, Géométrie analytique locale, Séminaire H. Cartan 13 (1960/61), No.18-21; 12, 22, 25, 15 p. (1962) 
  7. James E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York Zbl0471.20029MR396773
  8. Bernard Malgrange, La variété caractéristique d’un système différentiel analytique, Ann. Inst. Fourier (Grenoble) 50 (2000), 491-518 Zbl0951.35007MR1775359
  9. Bernard Malgrange, Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 38 (2001), 465-501, Enseignement Math., Geneva Zbl1033.32020MR1929336
  10. Bernard Malgrange, Systèmes différentiels involutifs, 19 (2005), Société Mathématique de France, Paris Zbl1090.35003MR2187078
  11. Jean Martinet, Jean-Pierre Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École norm. sup. (4) 16 (1983), 571-621 (1984) Zbl0534.34011MR740592
  12. Marius van der Put, Michael F. Singer, Galois theory of difference equations, 1666 (1997), Springer-Verlag, Berlin Zbl0930.12006MR1480919
  13. Jacques Sauloy, Théorie de Galois des équations aux q -différences fuchsiennes, (1999) Zbl0919.39003
  14. Jacques Sauloy, Galois theory of Fuchsian q -difference equations, Ann. Sci. École norm. sup. (4) 36 (2003), 925-968 (2004) Zbl1053.39033MR2032530

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.