Epstein zeta function and Bloch-Wigner dilogarithm
- [1] Université Pierre et Marie Curie (Paris 6) Institut de Mathématiques 175, rue du Chevaleret 75013 PARIS
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 1, page 21-34
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBertin, Marie José. "Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 21-34. <http://eudml.org/doc/219707>.
@article{Bertin2011,
abstract = {Nous exprimons certaines séries d’Epstein normalisées en $s=2$ comme combinaisons linéaires de dilogarithmes de Bloch-Wigner en des nombres algébriques des corps $\mathbb\{Q\}(\sqrt\{\Delta \})$ pour les discriminants $\Delta $ associés à la forme quadratique.},
affiliation = {Université Pierre et Marie Curie (Paris 6) Institut de Mathématiques 175, rue du Chevaleret 75013 PARIS},
author = {Bertin, Marie José},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Epstein series; Bloch-Wigner dilogarithm; Dirichlet L-series; Bloch groups of number fields},
language = {fre},
month = {3},
number = {1},
pages = {21-34},
publisher = {Société Arithmétique de Bordeaux},
title = {Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner},
url = {http://eudml.org/doc/219707},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Bertin, Marie José
TI - Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 21
EP - 34
AB - Nous exprimons certaines séries d’Epstein normalisées en $s=2$ comme combinaisons linéaires de dilogarithmes de Bloch-Wigner en des nombres algébriques des corps $\mathbb{Q}(\sqrt{\Delta })$ pour les discriminants $\Delta $ associés à la forme quadratique.
LA - fre
KW - Epstein series; Bloch-Wigner dilogarithm; Dirichlet L-series; Bloch groups of number fields
UR - http://eudml.org/doc/219707
ER -
References
top- M.J. Bertin, A Mahler measure of a K3 surface expressed as a Dirichlet L-series. À paraître au Canadian Math. Bulletin. Zbl1273.11152
- L. Bianchi, Sui gruppi di sostitutioni lineari con coefficienti a corpi quadratici imaginarii. Math. Ann. 38 (1891), 313–333 et (1892), 332–412.
- S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. Proceedings of the International Symposium in Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 103–114, Kinokuniya Book Store, Tokyo, 1978. Zbl0416.18016MR578856
- A. Borel, Cohomologie de et valeurs de fonctions zêta aux points entiers. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 613–636. Zbl0382.57027MR506168
- D.W. Boyd, F. Rodriguez-Villegas & N. Dunfield, Mahler’s measure and the dilogarithm (II)). ArXiv :math/0308041v2 [math. NT], 21 Nov 2005. MR1900760
- L. Dickson, Introduction to the theory of numbers. Dover, New York, 1957. Zbl0084.26901MR1824176
- J. Dupont & C. Sah, Scissors congruences, II. J. Pure Appl. Algebra 25 (1982), 159–195. Zbl0496.52004MR662760
- A. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math. 114 (1995), 197–318. Zbl0863.19004MR1348706
- D. Grayson, Dilogarithm computations for . In Algebraic K-theory (Evanston, 1980), ed. E. Friedlander and M. Stein, 168–178, Lecture Notes in Math. 854, Springer, Berlin, 1981. Zbl0509.18017MR618304
- J. Huard, P. Kaplan & K. Williams, The Chowla-Selberg formula for genera. Acta Arith. 73 (1995), 271–301. Zbl0855.11018MR1364463
- G. Humbert, Sur la mesure des classes d’Hermite de discriminant donné dans un corps quadratique imaginaire, et sur certains volumes non euclidiens. Comptes Rendus (Paris) 169 (1919), 448–454.
- W. Neumann & D. Zagier, Volumes of hyperbolic 3-manifolds. Topology 24 (1985), 307–332. Zbl0589.57015MR815482
- A.A. Suslin, of a field, and the Bloch group, Galois theory, rings, algebraic groups and their applications. Trudy Mat. Inst. Steklov 183 (1990), 180–199. Zbl0741.19005MR1092031
- R. Swan, Generators and relations for certain special linear groups. Bull. AMS 74 (1968), 576–581. Zbl0221.20061MR224724
- W. Thurston, The geometry and topology of -manifolds. Chapter 7 “Computation of volume” by J. Milnor, Princeton Univ. Mimeographed Notes.
- K. Williams, Some Lambert Series Expansions of Products of Theta functions. The Ramanujan Journal 3 (1999), 367–384. Zbl0938.11017MR1738903
- D. Zagier, The Dilogarithm Function, Frontiers in number theory, physics, and geometry II. 3-65, Berlin, Springer, 2007. Zbl1176.11026MR2290758
- D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions. Invent. Math. 83 (1986), 285–301. Zbl0591.12014MR818354
- D. Zagier & H. Gangl, Classical and elliptic polylogarithms and special values of L-series. In The Arithmetic and Geometry of Algebraic Cycles, Nato Sciences Series C 548, 561–615, Kluwer, Dordrecht, 2000. Zbl0990.11041MR1744961
- I. Zucker & R. McPhedran, Dirichlet L-series with real and complex characters and their application to solving double sums. ArXiv :0708.1224v1 [math-ph], 9 Aug. 2007, 1–21. MR2395506
- I. Zucker & M. Robertson, A systematic approach to the evaluation of . J. Phys. A : Math. Gen., Vol. 9, No. 8 (1976), 1215–1225. Zbl0338.10038MR412115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.