Epstein zeta function and Bloch-Wigner dilogarithm

Marie José Bertin[1]

  • [1] Université Pierre et Marie Curie (Paris 6) Institut de Mathématiques 175, rue du Chevaleret 75013 PARIS

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 21-34
  • ISSN: 1246-7405

Abstract

top
We give an expression for s = 2 of some normalized Epstein series as Bloch-Wigner dilogarithms of algebraic numbers of ( Δ ) , for the discriminants Δ associated to the quadratic form.

How to cite

top

Bertin, Marie José. "Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 21-34. <http://eudml.org/doc/219707>.

@article{Bertin2011,
abstract = {Nous exprimons certaines séries d’Epstein normalisées en $s=2$ comme combinaisons linéaires de dilogarithmes de Bloch-Wigner en des nombres algébriques des corps $\mathbb\{Q\}(\sqrt\{\Delta \})$ pour les discriminants $\Delta $ associés à la forme quadratique.},
affiliation = {Université Pierre et Marie Curie (Paris 6) Institut de Mathématiques 175, rue du Chevaleret 75013 PARIS},
author = {Bertin, Marie José},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Epstein series; Bloch-Wigner dilogarithm; Dirichlet L-series; Bloch groups of number fields},
language = {fre},
month = {3},
number = {1},
pages = {21-34},
publisher = {Société Arithmétique de Bordeaux},
title = {Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner},
url = {http://eudml.org/doc/219707},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Bertin, Marie José
TI - Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 21
EP - 34
AB - Nous exprimons certaines séries d’Epstein normalisées en $s=2$ comme combinaisons linéaires de dilogarithmes de Bloch-Wigner en des nombres algébriques des corps $\mathbb{Q}(\sqrt{\Delta })$ pour les discriminants $\Delta $ associés à la forme quadratique.
LA - fre
KW - Epstein series; Bloch-Wigner dilogarithm; Dirichlet L-series; Bloch groups of number fields
UR - http://eudml.org/doc/219707
ER -

References

top
  1. M.J. Bertin, A Mahler measure of a K3 surface expressed as a Dirichlet L-series. À paraître au Canadian Math. Bulletin. Zbl1273.11152
  2. L. Bianchi, Sui gruppi di sostitutioni lineari con coefficienti a corpi quadratici imaginarii. Math. Ann. 38 (1891), 313–333 et (1892), 332–412. 
  3. S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. Proceedings of the International Symposium in Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 103–114, Kinokuniya Book Store, Tokyo, 1978. Zbl0416.18016MR578856
  4. A. Borel, Cohomologie de S L n et valeurs de fonctions zêta aux points entiers. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 613–636. Zbl0382.57027MR506168
  5. D.W. Boyd, F. Rodriguez-Villegas & N. Dunfield, Mahler’s measure and the dilogarithm (II)). ArXiv :math/0308041v2 [math. NT], 21 Nov 2005. MR1900760
  6. L. Dickson, Introduction to the theory of numbers. Dover, New York, 1957. Zbl0084.26901MR1824176
  7. J. Dupont & C. Sah, Scissors congruences, II. J. Pure Appl. Algebra 25 (1982), 159–195. Zbl0496.52004MR662760
  8. A. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math. 114 (1995), 197–318. Zbl0863.19004MR1348706
  9. D. Grayson, Dilogarithm computations for K 3 . In Algebraic K-theory (Evanston, 1980), ed. E. Friedlander and M. Stein, 168–178, Lecture Notes in Math. 854, Springer, Berlin, 1981. Zbl0509.18017MR618304
  10. J. Huard, P. Kaplan & K. Williams, The Chowla-Selberg formula for genera. Acta Arith. 73 (1995), 271–301. Zbl0855.11018MR1364463
  11. G. Humbert, Sur la mesure des classes d’Hermite de discriminant donné dans un corps quadratique imaginaire, et sur certains volumes non euclidiens. Comptes Rendus (Paris) 169 (1919), 448–454. 
  12. W. Neumann & D. Zagier, Volumes of hyperbolic 3-manifolds. Topology 24 (1985), 307–332. Zbl0589.57015MR815482
  13. A.A. Suslin, K 3 of a field, and the Bloch group, Galois theory, rings, algebraic groups and their applications. Trudy Mat. Inst. Steklov 183 (1990), 180–199. Zbl0741.19005MR1092031
  14. R. Swan, Generators and relations for certain special linear groups. Bull. AMS 74 (1968), 576–581. Zbl0221.20061MR224724
  15. W. Thurston, The geometry and topology of 3 -manifolds. Chapter 7 “Computation of volume” by J. Milnor, Princeton Univ. Mimeographed Notes. 
  16. K. Williams, Some Lambert Series Expansions of Products of Theta functions. The Ramanujan Journal 3 (1999), 367–384. Zbl0938.11017MR1738903
  17. D. Zagier, The Dilogarithm Function, Frontiers in number theory, physics, and geometry II. 3-65, Berlin, Springer, 2007. Zbl1176.11026MR2290758
  18. D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions. Invent. Math. 83 (1986), 285–301. Zbl0591.12014MR818354
  19. D. Zagier & H. Gangl, Classical and elliptic polylogarithms and special values of L-series. In The Arithmetic and Geometry of Algebraic Cycles, Nato Sciences Series C 548, 561–615, Kluwer, Dordrecht, 2000. Zbl0990.11041MR1744961
  20. I. Zucker & R. McPhedran, Dirichlet L-series with real and complex characters and their application to solving double sums. ArXiv :0708.1224v1 [math-ph], 9 Aug. 2007, 1–21. MR2395506
  21. I. Zucker & M. Robertson, A systematic approach to the evaluation of ( m , n 0 , 0 ) ( a m 2 + b m n + c n 2 ) - s . J. Phys. A : Math. Gen., Vol. 9, No. 8 (1976), 1215–1225. Zbl0338.10038MR412115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.