Cohomologie de et valeurs de fonctions zêta aux points entiers
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1977)
- Volume: 4, Issue: 4, page 613-636
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBorel, Armand. "Cohomologie de $SL_n$ et valeurs de fonctions zêta aux points entiers." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (1977): 613-636. <http://eudml.org/doc/83764>.
@article{Borel1977,
author = {Borel, Armand},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {4},
pages = {613-636},
publisher = {Scuola normale superiore},
title = {Cohomologie de $SL_n$ et valeurs de fonctions zêta aux points entiers},
url = {http://eudml.org/doc/83764},
volume = {4},
year = {1977},
}
TY - JOUR
AU - Borel, Armand
TI - Cohomologie de $SL_n$ et valeurs de fonctions zêta aux points entiers
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1977
PB - Scuola normale superiore
VL - 4
IS - 4
SP - 613
EP - 636
LA - fre
UR - http://eudml.org/doc/83764
ER -
References
top- [1] E. Artin - J. Tate, Class field theory, Benjamin, New York, 1967. Zbl0176.33504MR223335
- [2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Annals of Math. (2), 57 (1953), pp. 115-207. Zbl0052.40001MR51508
- [3] A. Borel, A spectral sequence for complex analytic bundles, Appendix 2 in F. HIRZEBRUCH, Topological methods in algebraic geometry, 3rd ed., Springer (1966), pp. 202-217.
- [4] A. Borel, Stable real cohomological of arithmetic groups, Annales E.N.S. (4), 7 (1974), pp. 235-272. Zbl0316.57026MR387496
- [5] A. Borel, Cohomology of arithmetic groups, Proc. Int. Congress Math. Van-couver1974, vol. 1, pp. 435-442. Zbl0338.20051MR578905
- [6] A. Borel - F. Hirzebruch, Characteristic classes and homogeneous spaces - I, Amer. Jour. Math., 80 (1958), pp. 458-536; II, ibid., 81 (1959), pp. 315-382. Zbl0097.36401MR102800
- [7] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 7, 8, Act. Sci. Ind.1364, Hermann éd., Paris, 1975. MR453824
- [8] G. Hochschild - J.-P. Serre, Cohomology of Lie algebras, Annals of Math. (2), 57 (1953), pp. 591-603. Zbl0053.01402MR54581
- [9] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78 (1950), pp. 65-127. Zbl0039.02901MR36511
- [10] J.-L. Koszul, Sur un type d'algèbres différentielles en rapport avec la transgression, Coll. Topologie algébrique, Bruxelles1950, G. Thone, Liège, 1951, pp. 73-81. Zbl0045.30801MR42428
- [11] J. Leray, Sur l'homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux, Coll. Topologie algébrique, Bruxelles1950, G. Thone, Liège1951, pp. 101-115. Zbl0042.41801MR41148
- [12] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory, Algebraic K-theory - II, Springer Lecture Notes in Mathematics, 342 (1973), pp. 489-501. Zbl0284.12005MR406981
- [13] T Ono, Algebraic groups and discontinuous groups, Nagoya Math. Jour., 27 (1966), pp. 279-322. Zbl0166.29802MR199193
- [14] J.-P. Serre, Corps locaux, Act. Sci. Ind.1296, Hermann, Paris1966. Zbl0137.02601MR354618
- [15] A. Weil, Adeles and algebraic groups, Notes by M. Demazure and T. Ono, Institute for Advanced Study, Princeton, N.J., 1961. MR670072
- [16] A. Weil, Basic number theory, Grund. Math. Wiss., 144, Springer1973. Zbl0267.12001MR427267
Citations in EuDML Documents
top- Joseph Oesterlé, Polylogarithmes
- Bjørn Jahren, K-theory, flat bundles and the Borel classes
- Marie José Bertin, Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner
- Christophe Soulé, Régulateurs
- Jun Yang, On the real cohomology of arithmetic groups and the rank conjecture for number fields
- Pierre Deligne, Alexander B. Goncharov, Groupes fondamentaux motiviques de Tate mixte
- Rob de Jeu, Zagier’s conjecture and Wedge complexes in algebraic -theory
- Georg Tamme, Karoubi’s relative Chern character and Beilinson’s regulator
- Benjamin Schraen, Représentations localement analytiques de
- Amnon Besser, Rob de Jeu, The syntomic regulator for the K-theory of fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.