Conformally invariant trilinear forms on the sphere
Jean-Louis Clerc[1]; Bent Ørsted[2]
- [1] Université Henri Poincaré (Nancy 1) Institut Élie Cartan 54506 Vandoeuvre-lès-Nancy (France)
- [2] Matematisk Institut Byg. 430, Ny Munkegade 8000 Aarhus C (Denmark)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 1807-1838
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topClerc, Jean-Louis, and Ørsted, Bent. "Conformally invariant trilinear forms on the sphere." Annales de l’institut Fourier 61.5 (2011): 1807-1838. <http://eudml.org/doc/219713>.
@article{Clerc2011,
abstract = {To each complex number $\lambda $ is associated a representation $\pi _\lambda $ of the conformal group $SO_0(1,n)$ on $\mathcal\{C\}^\infty (S^\{n-1\})$ (spherical principal series). For three values $\lambda _1,\lambda _2,\lambda _3$, we construct a trilinear form on $\mathcal\{C\}^\infty (S^\{n-1\})\times \mathcal\{C\}^\infty (S^\{n-1\})\times \mathcal\{C\}^\infty (S^\{n-1\})$, which is invariant by $\pi _\{\lambda _1\}\otimes \pi _\{\lambda _2\}\otimes \pi _\{\lambda _3\}$. The trilinear form, first defined for $(\lambda _1, \lambda _2,\lambda _3)$ in an open set of $\mathbb\{C\}^3$ is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.},
affiliation = {Université Henri Poincaré (Nancy 1) Institut Élie Cartan 54506 Vandoeuvre-lès-Nancy (France); Matematisk Institut Byg. 430, Ny Munkegade 8000 Aarhus C (Denmark)},
author = {Clerc, Jean-Louis, Ørsted, Bent},
journal = {Annales de l’institut Fourier},
keywords = {Trilinear invariant forms; conformal group; meromorphic continuation; trilinear invariant forms},
language = {eng},
number = {5},
pages = {1807-1838},
publisher = {Association des Annales de l’institut Fourier},
title = {Conformally invariant trilinear forms on the sphere},
url = {http://eudml.org/doc/219713},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Clerc, Jean-Louis
AU - Ørsted, Bent
TI - Conformally invariant trilinear forms on the sphere
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1807
EP - 1838
AB - To each complex number $\lambda $ is associated a representation $\pi _\lambda $ of the conformal group $SO_0(1,n)$ on $\mathcal{C}^\infty (S^{n-1})$ (spherical principal series). For three values $\lambda _1,\lambda _2,\lambda _3$, we construct a trilinear form on $\mathcal{C}^\infty (S^{n-1})\times \mathcal{C}^\infty (S^{n-1})\times \mathcal{C}^\infty (S^{n-1})$, which is invariant by $\pi _{\lambda _1}\otimes \pi _{\lambda _2}\otimes \pi _{\lambda _3}$. The trilinear form, first defined for $(\lambda _1, \lambda _2,\lambda _3)$ in an open set of $\mathbb{C}^3$ is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.
LA - eng
KW - Trilinear invariant forms; conformal group; meromorphic continuation; trilinear invariant forms
UR - http://eudml.org/doc/219713
ER -
References
top- Joseph Bernstein, Andre Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), 19-37 Zbl1081.11037MR2074982
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205 Zbl0074.10303MR84713
- Jean-Louis Clerc, T. Kobayashi, B. Ørsted, M. Pevzner, Generalized Bernstein- Reznikov integrals
- Jean-Louis Clerc, Karl-Hermann Neeb, Orbits of triples in the Shilov boundary of a bounded symmetric domain, Transform. Groups 11 (2006), 387-426 Zbl1112.32010MR2264460
- Anton Deitmar, Invariant triple products, Int. J. Math. Math. Sci. (2006) Zbl1140.22018MR2251763
- I. M. Gelʼfand, G. E. Shilov, Generalized functions. Vol. 1, (1964 [1977]), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0115.33101MR166596
- Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1983), Springer-Verlag, Berlin Zbl0521.35001MR717035
- Johan A. C. Kolk, V. S. Varadarajan, On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.) 7 (1996), 67-96 Zbl0892.22010MR1621372
- Peter Littelmann, On spherical double cones, J. Algebra 166 (1994), 142-157 Zbl0823.20040MR1276821
- Hung Yean Loke, Trilinear forms of , Pacific J. Math. 197 (2001), 119-144 Zbl1049.22007MR1810211
- Peter Magyar, Jerzy Weyman, Andrei Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), 97-118 Zbl0951.14034MR1667147
- V. F. Molčanov, Tensor products of unitary representations of the three-dimensional Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 860-891, 967 Zbl0448.22010MR548507
- A. I. Oksak, Trilinear Lorentz invariant forms, Comm. Math. Phys. 29 (1973), 189-217 MR340478
- C. Sabbah, Polynômes de Bernstein-Sato à plusieurs variables, Séminaire sur les équations aux dérivées partielles 1986–1987 (1987), École Polytech., Palaiseau Zbl0634.32003MR920037
- Reiji Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289-433 Zbl0196.15501MR179296
- E. P. van den Ban, The principal series for a reductive symmetric space. I. -fixed distribution vectors, Ann. Sci. École Norm. Sup. (4) 21 (1988), 359-412 Zbl0714.22009MR974410
- Nolan R. Wallach, Harmonic analysis on homogeneous spaces, (1973), Marcel Dekker Inc., New York Zbl0265.22022MR498996
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, (1972), Springer-Verlag, New York Zbl0265.22020MR498999
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.