Conformally invariant trilinear forms on the sphere

Jean-Louis Clerc[1]; Bent Ørsted[2]

  • [1] Université Henri Poincaré (Nancy 1) Institut Élie Cartan 54506 Vandoeuvre-lès-Nancy (France)
  • [2] Matematisk Institut Byg. 430, Ny Munkegade 8000 Aarhus C (Denmark)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 1807-1838
  • ISSN: 0373-0956

Abstract

top
To each complex number λ is associated a representation π λ of the conformal group S O 0 ( 1 , n ) on 𝒞 ( S n - 1 ) (spherical principal series). For three values λ 1 , λ 2 , λ 3 , we construct a trilinear form on 𝒞 ( S n - 1 ) × 𝒞 ( S n - 1 ) × 𝒞 ( S n - 1 ) , which is invariant by π λ 1 π λ 2 π λ 3 . The trilinear form, first defined for ( λ 1 , λ 2 , λ 3 ) in an open set of 3 is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.

How to cite

top

Clerc, Jean-Louis, and Ørsted, Bent. "Conformally invariant trilinear forms on the sphere." Annales de l’institut Fourier 61.5 (2011): 1807-1838. <http://eudml.org/doc/219713>.

@article{Clerc2011,
abstract = {To each complex number $\lambda $ is associated a representation $\pi _\lambda $ of the conformal group $SO_0(1,n)$ on $\mathcal\{C\}^\infty (S^\{n-1\})$ (spherical principal series). For three values $\lambda _1,\lambda _2,\lambda _3$, we construct a trilinear form on $\mathcal\{C\}^\infty (S^\{n-1\})\times \mathcal\{C\}^\infty (S^\{n-1\})\times \mathcal\{C\}^\infty (S^\{n-1\})$, which is invariant by $\pi _\{\lambda _1\}\otimes \pi _\{\lambda _2\}\otimes \pi _\{\lambda _3\}$. The trilinear form, first defined for $(\lambda _1, \lambda _2,\lambda _3)$ in an open set of $\mathbb\{C\}^3$ is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.},
affiliation = {Université Henri Poincaré (Nancy 1) Institut Élie Cartan 54506 Vandoeuvre-lès-Nancy (France); Matematisk Institut Byg. 430, Ny Munkegade 8000 Aarhus C (Denmark)},
author = {Clerc, Jean-Louis, Ørsted, Bent},
journal = {Annales de l’institut Fourier},
keywords = {Trilinear invariant forms; conformal group; meromorphic continuation; trilinear invariant forms},
language = {eng},
number = {5},
pages = {1807-1838},
publisher = {Association des Annales de l’institut Fourier},
title = {Conformally invariant trilinear forms on the sphere},
url = {http://eudml.org/doc/219713},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Clerc, Jean-Louis
AU - Ørsted, Bent
TI - Conformally invariant trilinear forms on the sphere
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1807
EP - 1838
AB - To each complex number $\lambda $ is associated a representation $\pi _\lambda $ of the conformal group $SO_0(1,n)$ on $\mathcal{C}^\infty (S^{n-1})$ (spherical principal series). For three values $\lambda _1,\lambda _2,\lambda _3$, we construct a trilinear form on $\mathcal{C}^\infty (S^{n-1})\times \mathcal{C}^\infty (S^{n-1})\times \mathcal{C}^\infty (S^{n-1})$, which is invariant by $\pi _{\lambda _1}\otimes \pi _{\lambda _2}\otimes \pi _{\lambda _3}$. The trilinear form, first defined for $(\lambda _1, \lambda _2,\lambda _3)$ in an open set of $\mathbb{C}^3$ is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.
LA - eng
KW - Trilinear invariant forms; conformal group; meromorphic continuation; trilinear invariant forms
UR - http://eudml.org/doc/219713
ER -

References

top
  1. Joseph Bernstein, Andre Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), 19-37 Zbl1081.11037MR2074982
  2. François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205 Zbl0074.10303MR84713
  3. Jean-Louis Clerc, T. Kobayashi, B. Ørsted, M. Pevzner, Generalized Bernstein- Reznikov integrals 
  4. Jean-Louis Clerc, Karl-Hermann Neeb, Orbits of triples in the Shilov boundary of a bounded symmetric domain, Transform. Groups 11 (2006), 387-426 Zbl1112.32010MR2264460
  5. Anton Deitmar, Invariant triple products, Int. J. Math. Math. Sci. (2006) Zbl1140.22018MR2251763
  6. I. M. Gelʼfand, G. E. Shilov, Generalized functions. Vol. 1, (1964 [1977]), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0115.33101MR166596
  7. Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1983), Springer-Verlag, Berlin Zbl0521.35001MR717035
  8. Johan A. C. Kolk, V. S. Varadarajan, On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.) 7 (1996), 67-96 Zbl0892.22010MR1621372
  9. Peter Littelmann, On spherical double cones, J. Algebra 166 (1994), 142-157 Zbl0823.20040MR1276821
  10. Hung Yean Loke, Trilinear forms of 𝔤𝔩 2 , Pacific J. Math. 197 (2001), 119-144 Zbl1049.22007MR1810211
  11. Peter Magyar, Jerzy Weyman, Andrei Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), 97-118 Zbl0951.14034MR1667147
  12. V. F. Molčanov, Tensor products of unitary representations of the three-dimensional Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 860-891, 967 Zbl0448.22010MR548507
  13. A. I. Oksak, Trilinear Lorentz invariant forms, Comm. Math. Phys. 29 (1973), 189-217 MR340478
  14. C. Sabbah, Polynômes de Bernstein-Sato à plusieurs variables, Séminaire sur les équations aux dérivées partielles 1986–1987 (1987), École Polytech., Palaiseau Zbl0634.32003MR920037
  15. Reiji Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289-433 Zbl0196.15501MR179296
  16. E. P. van den Ban, The principal series for a reductive symmetric space. I. H -fixed distribution vectors, Ann. Sci. École Norm. Sup. (4) 21 (1988), 359-412 Zbl0714.22009MR974410
  17. Nolan R. Wallach, Harmonic analysis on homogeneous spaces, (1973), Marcel Dekker Inc., New York Zbl0265.22022MR498996
  18. Garth Warner, Harmonic analysis on semi-simple Lie groups. I, (1972), Springer-Verlag, New York Zbl0265.22020MR498999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.