The principal series for a reductive symmetric space. I. -fixed distribution vectors
Annales scientifiques de l'École Normale Supérieure (1988)
- Volume: 21, Issue: 3, page 359-412
- ISSN: 0012-9593
Access Full Article
topHow to cite
topvan den Ban, E. P.. "The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors." Annales scientifiques de l'École Normale Supérieure 21.3 (1988): 359-412. <http://eudml.org/doc/82231>.
@article{vandenBan1988,
author = {van den Ban, E. P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {reductive symmetric space; principal series; parabolic subgroup; representations; Intertwining operators; induced representations; restriction; distributions; Cartan subgroups},
language = {eng},
number = {3},
pages = {359-412},
publisher = {Elsevier},
title = {The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors},
url = {http://eudml.org/doc/82231},
volume = {21},
year = {1988},
}
TY - JOUR
AU - van den Ban, E. P.
TI - The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 3
SP - 359
EP - 412
LA - eng
KW - reductive symmetric space; principal series; parabolic subgroup; representations; Intertwining operators; induced representations; restriction; distributions; Cartan subgroups
UR - http://eudml.org/doc/82231
ER -
References
top- [Ba 86] E. P. van den BAN, A Convexity Theorem for Semisimple Symmetric Spaces (Pac. J. Math., Vol. 124, 1986, pp. 21-55). Zbl0599.22014MR87m:22039
- [Ba 87 I] E. P. van den BAN, Invariant Differential Operators on a Semisimple Symmetric Space and Finite Multiplicities in a Plancherel Formula (Ark. för Mat., Vol. 25, 1987, pp. 175-187). Zbl0645.43009MR89g:22019
- [Ba 87 II] E. P. van den BAN, Asymptotic Behaviour of Matrix Coefficients Related to Reductive Symmetric Spaces (Proc. Kon. Ned. Akad. Wet., Ser. A, Vol. 90, 1987, pp. 225-249). Zbl0629.43008MR89c:22025
- [Ba 88] E. P. van den BAN, The Principal Series for a Reductive Symmetric Space II. Eisenstein Integrals, in preparation.
- [Be 57] M. BERGER, Les espaces symétriques non-compacts (Ann. scient. Ec. Norm. Sup., Vol. 74, 1957, pp. 85-117). Zbl0093.35602MR21 #3516
- [B 72] I. N. BERNSTEIN, The analytic continuation of generalized functions with respect to a parameter (Funct. Anal. and its Applic., Vol. 6, 1972, pp. 273-285). Zbl0282.46038MR47 #9269
- [B-G 69] I. N. BERNSTEIN and I. S. GELFAND, Meromorphic Property of the Function Pλ (Funct. Anal. and its Applic., Vol. 3, 1969, pp. 68-69).
- [Br 56] F. BRUHAT, Sur les représentations induites des groupes de Lie (Bull. Soc. Math. France, Vol. 84, 1956, pp. 97-205). Zbl0074.10303MR18,907i
- [D 85] P. DELORME, Injection de modules sphériques pour les espaces symétriques réductifs dans certaines représentations induites (Proceedings Marseille-Luminy 1985, LNM 1243), Springer-Verlag, 1987, pp. 108-134. Zbl0658.22003MR89c:22026
- [DP 86] G. van DIJK and M. POEL, The Plancherel Formula for the Pseudo-Riemannian Space SL (n, ℝ)/G1 (n - 1, ℝ) (Comp. Math., Vol. 58, 1986, pp. 371-397). Zbl0593.43009MR87m:22022
- [Fa 79] J. FARAUT, Distributions sphériques sur les espaces hyperboliques (J. Math. Pures Appl., Vol. 58, 1979, pp. 369-444). Zbl0436.43011MR82k:43009
- [FJ 86] M. FLENSTED-JENSEN, Analysis on non-Riemannian Symmetric Spaces (A.M.S. Regional Conference Series 61, 1986). Zbl0589.43008MR87h:43013
- [HC 58 I, II] HARISH-CHANDRA, Spherical Functions on a Semisimple Lie Group I, II (Amer. J. of Math., Vol. 80, 1958, pp. 241-310 and pp. 553-613). Zbl0093.12801MR20 #925
- [HC 75] HARISH-CHANDRA, Harmonic Analysis on Real Reductive Groups I. The theory of the constant term (J. Funct. Anal., Vol. 19, 1975, pp. 103-204). Zbl0315.43002MR53 #3201
- [HC 76] HARISH-CHANDRA, Harmonic Analysis on Real Reductive Groups II. Wave Packets in the Schwartz Space (Invent. Math., Vol. 36, 1979, pp. 1-55). Zbl0341.43010MR55 #12874
- [HC 76 II] HARISH-CHANDRA, Harmonic Analysis on Real Reductive Groups III. The Maass-Selberg Relations and the Plancherel Formula (Ann. of Math., Vol. 104, 1976, pp. 117-201). Zbl0331.22007MR55 #12875
- [He 84] S. HELGASON, Groups and Geometric Analysis, Academic Press, 1984. Zbl0543.58001MR86c:22017
- [Hör 83] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.
- [KKMOOT 78] M. KASHIWARA, A. KOWATA, K. MINEMURA, K. OKAMOTO, T. OSHIMA and M. TANAKA, Eigenfunctions of Invariant Differential Operators on a Symmetric Space. (Ann. of Math., Vol. 107, 1978, pp. 1-39). Zbl0377.43012MR81f:43013
- [K-S 80] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semisimple Groups (Ann. of Math., Vol. 93, 1971, pp. 489-578). Zbl0257.22015MR57 #536
- [K-S 80] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semisimple Groups, II (Invent. Math., Vol. 60, 1980, pp. 9-84). Zbl0454.22010MR82a:22018
- [Kn 82] A. W. KNAPP, Commutativity of Intertwining Operators for Semisimple Groups (Comp. Math., Vol. 46, 1982, pp. 33-84). Zbl0488.22027MR83i:22022
- [Kom 67] H. KOMATSU, Projective and Injective Limits of Weakly Compact Sequences of Locally Convex Spaces (J. Math. Soc. Japan, Vol. 19, 1967, pp. 366-383). Zbl0168.10603MR36 #646
- [Ko-Ra 71] B. KOSTANT and S. RALLIS, Orbits and Representations Associated with Symmetric Spaces (Amer. J. Math., Vol. 93, 1971, pp. 753-809). Zbl0224.22013MR47 #399
- [Ma 79] T. MATSUKI, The Orbits of Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups (J. Math. Soc. Japan, Vol. 31, 1979, pp. 331-357). Zbl0396.53025MR81a:53049
- [Ma 82] T. MATSUKI, Orbits on Affine Symmetric Spaces under the Action of Parabolic Subgroups (Hiroshima Math. J. Vol. 12, 1982, pp. 307-320). Zbl0495.53049MR83k:53072
- [O1 87] G. OLAFSSON, Fourier and Poisson Transformation Associated to a Semisimple Symmetric Space (Invent. Math., Vol. 90, 1987, pp. 605-629). Zbl0665.43004MR89d:43011
- [Os 79] T. OSHIMA, Poisson Transformations on Affine Symmetric Spaces (Proc. Japan Acad., Vol. 55, Série A, 1979, pp. 323-327). Zbl0485.22011MR81k:43013
- [O-S 80] T. OSHIMA and J. SEKIGUCHI, Eigenspaces of Invariant Differential Operators on an Affine Symmetric Space (Invent. Math., Vol. 57, 1980, pp. 1-81). Zbl0434.58020MR81k:43014
- [Pe 75] R. PENNEY, Abstract Plancherel Theorems and a Frobenius Reciprocity Theorem (J. of Funct. Anal., Vol. 18, 1975, pp. 177-190). Zbl0305.22016MR56 #3191
- [Ro 78] W. ROSSMANN, Analysis on Real Hyperbolic Spaces (J. Funct. Anal., Vol. 30, 1978, pp. 448-477). Zbl0395.22014MR80f:43021
- [Ro 79] W. ROSSMANN, The Structure of Semisimple Symmetric Spaces (Can. J. Math., Vol. 31, 1979, pp. 157-180). Zbl0357.53033MR81i:53042
- [S 71] G. SCHIFFMANN, Intégrales d'entrelacement et fonctions de Whittaker (Bull. Soc. Math., France, Vol. 99, 1971, pp. 3-72). Zbl0223.22017MR47 #400
- [Schl 84] H. SCHLICHTKRULL, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhöuser, 1984. Zbl0555.43002MR86g:22021
- [Schw 50] L. SCHWARTZ, Théorie des distributions, Tome I, Hermann, 1950. Zbl0037.07301MR12,31d
- [Str 73] R. S. STRICHARTZ, Harmonic analysis on hyperboloids (J. Funct. Anal., Vol. 12, 1973, pp. 341-383). Zbl0253.43013MR50 #5370
- [Va 74] V. S. VARADARAJAN, Lie Groups, Lie Algebras, and their Representations, Prentice Hall, 1974. Zbl0371.22001MR51 #13113
- [Va 77] V. S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups (Lecture Notes 576), Springer-Verlag, 1977. Zbl0354.43001MR57 #12789
- [Vo 81] D. A. VOGAN, Representations of Real Reductive Lie Groups, (P.M. 15), Birkhöuser, Boston, 1981. Zbl0469.22012MR83c:22022
- [War 72] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, 1972. Zbl0265.22020
Citations in EuDML Documents
top- Jacques Faraut, Joachim Hilgert, Gestur Ólafsson, Spherical functions on ordered symmetric spaces
- Nicole Bopp, Hubert Rubenthaler, Fonction zêta associée à la série principale sphérique de certains espaces symétriques
- Jean-Louis Clerc, Bent Ørsted, Conformally invariant trilinear forms on the sphere
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.