The principal series for a reductive symmetric space. I. H -fixed distribution vectors

E. P. van den Ban

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 3, page 359-412
  • ISSN: 0012-9593

How to cite

top

van den Ban, E. P.. "The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors." Annales scientifiques de l'École Normale Supérieure 21.3 (1988): 359-412. <http://eudml.org/doc/82231>.

@article{vandenBan1988,
author = {van den Ban, E. P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {reductive symmetric space; principal series; parabolic subgroup; representations; Intertwining operators; induced representations; restriction; distributions; Cartan subgroups},
language = {eng},
number = {3},
pages = {359-412},
publisher = {Elsevier},
title = {The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors},
url = {http://eudml.org/doc/82231},
volume = {21},
year = {1988},
}

TY - JOUR
AU - van den Ban, E. P.
TI - The principal series for a reductive symmetric space. I. $H$-fixed distribution vectors
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 3
SP - 359
EP - 412
LA - eng
KW - reductive symmetric space; principal series; parabolic subgroup; representations; Intertwining operators; induced representations; restriction; distributions; Cartan subgroups
UR - http://eudml.org/doc/82231
ER -

References

top
  1. [Ba 86] E. P. van den BAN, A Convexity Theorem for Semisimple Symmetric Spaces (Pac. J. Math., Vol. 124, 1986, pp. 21-55). Zbl0599.22014MR87m:22039
  2. [Ba 87 I] E. P. van den BAN, Invariant Differential Operators on a Semisimple Symmetric Space and Finite Multiplicities in a Plancherel Formula (Ark. för Mat., Vol. 25, 1987, pp. 175-187). Zbl0645.43009MR89g:22019
  3. [Ba 87 II] E. P. van den BAN, Asymptotic Behaviour of Matrix Coefficients Related to Reductive Symmetric Spaces (Proc. Kon. Ned. Akad. Wet., Ser. A, Vol. 90, 1987, pp. 225-249). Zbl0629.43008MR89c:22025
  4. [Ba 88] E. P. van den BAN, The Principal Series for a Reductive Symmetric Space II. Eisenstein Integrals, in preparation. 
  5. [Be 57] M. BERGER, Les espaces symétriques non-compacts (Ann. scient. Ec. Norm. Sup., Vol. 74, 1957, pp. 85-117). Zbl0093.35602MR21 #3516
  6. [B 72] I. N. BERNSTEIN, The analytic continuation of generalized functions with respect to a parameter (Funct. Anal. and its Applic., Vol. 6, 1972, pp. 273-285). Zbl0282.46038MR47 #9269
  7. [B-G 69] I. N. BERNSTEIN and I. S. GELFAND, Meromorphic Property of the Function Pλ (Funct. Anal. and its Applic., Vol. 3, 1969, pp. 68-69). 
  8. [Br 56] F. BRUHAT, Sur les représentations induites des groupes de Lie (Bull. Soc. Math. France, Vol. 84, 1956, pp. 97-205). Zbl0074.10303MR18,907i
  9. [D 85] P. DELORME, Injection de modules sphériques pour les espaces symétriques réductifs dans certaines représentations induites (Proceedings Marseille-Luminy 1985, LNM 1243), Springer-Verlag, 1987, pp. 108-134. Zbl0658.22003MR89c:22026
  10. [DP 86] G. van DIJK and M. POEL, The Plancherel Formula for the Pseudo-Riemannian Space SL (n, ℝ)/G1 (n - 1, ℝ) (Comp. Math., Vol. 58, 1986, pp. 371-397). Zbl0593.43009MR87m:22022
  11. [Fa 79] J. FARAUT, Distributions sphériques sur les espaces hyperboliques (J. Math. Pures Appl., Vol. 58, 1979, pp. 369-444). Zbl0436.43011MR82k:43009
  12. [FJ 86] M. FLENSTED-JENSEN, Analysis on non-Riemannian Symmetric Spaces (A.M.S. Regional Conference Series 61, 1986). Zbl0589.43008MR87h:43013
  13. [HC 58 I, II] HARISH-CHANDRA, Spherical Functions on a Semisimple Lie Group I, II (Amer. J. of Math., Vol. 80, 1958, pp. 241-310 and pp. 553-613). Zbl0093.12801MR20 #925
  14. [HC 75] HARISH-CHANDRA, Harmonic Analysis on Real Reductive Groups I. The theory of the constant term (J. Funct. Anal., Vol. 19, 1975, pp. 103-204). Zbl0315.43002MR53 #3201
  15. [HC 76] HARISH-CHANDRA, Harmonic Analysis on Real Reductive Groups II. Wave Packets in the Schwartz Space (Invent. Math., Vol. 36, 1979, pp. 1-55). Zbl0341.43010MR55 #12874
  16. [HC 76 II] HARISH-CHANDRA, Harmonic Analysis on Real Reductive Groups III. The Maass-Selberg Relations and the Plancherel Formula (Ann. of Math., Vol. 104, 1976, pp. 117-201). Zbl0331.22007MR55 #12875
  17. [He 84] S. HELGASON, Groups and Geometric Analysis, Academic Press, 1984. Zbl0543.58001MR86c:22017
  18. [Hör 83] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983. 
  19. [KKMOOT 78] M. KASHIWARA, A. KOWATA, K. MINEMURA, K. OKAMOTO, T. OSHIMA and M. TANAKA, Eigenfunctions of Invariant Differential Operators on a Symmetric Space. (Ann. of Math., Vol. 107, 1978, pp. 1-39). Zbl0377.43012MR81f:43013
  20. [K-S 80] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semisimple Groups (Ann. of Math., Vol. 93, 1971, pp. 489-578). Zbl0257.22015MR57 #536
  21. [K-S 80] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semisimple Groups, II (Invent. Math., Vol. 60, 1980, pp. 9-84). Zbl0454.22010MR82a:22018
  22. [Kn 82] A. W. KNAPP, Commutativity of Intertwining Operators for Semisimple Groups (Comp. Math., Vol. 46, 1982, pp. 33-84). Zbl0488.22027MR83i:22022
  23. [Kom 67] H. KOMATSU, Projective and Injective Limits of Weakly Compact Sequences of Locally Convex Spaces (J. Math. Soc. Japan, Vol. 19, 1967, pp. 366-383). Zbl0168.10603MR36 #646
  24. [Ko-Ra 71] B. KOSTANT and S. RALLIS, Orbits and Representations Associated with Symmetric Spaces (Amer. J. Math., Vol. 93, 1971, pp. 753-809). Zbl0224.22013MR47 #399
  25. [Ma 79] T. MATSUKI, The Orbits of Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups (J. Math. Soc. Japan, Vol. 31, 1979, pp. 331-357). Zbl0396.53025MR81a:53049
  26. [Ma 82] T. MATSUKI, Orbits on Affine Symmetric Spaces under the Action of Parabolic Subgroups (Hiroshima Math. J. Vol. 12, 1982, pp. 307-320). Zbl0495.53049MR83k:53072
  27. [O1 87] G. OLAFSSON, Fourier and Poisson Transformation Associated to a Semisimple Symmetric Space (Invent. Math., Vol. 90, 1987, pp. 605-629). Zbl0665.43004MR89d:43011
  28. [Os 79] T. OSHIMA, Poisson Transformations on Affine Symmetric Spaces (Proc. Japan Acad., Vol. 55, Série A, 1979, pp. 323-327). Zbl0485.22011MR81k:43013
  29. [O-S 80] T. OSHIMA and J. SEKIGUCHI, Eigenspaces of Invariant Differential Operators on an Affine Symmetric Space (Invent. Math., Vol. 57, 1980, pp. 1-81). Zbl0434.58020MR81k:43014
  30. [Pe 75] R. PENNEY, Abstract Plancherel Theorems and a Frobenius Reciprocity Theorem (J. of Funct. Anal., Vol. 18, 1975, pp. 177-190). Zbl0305.22016MR56 #3191
  31. [Ro 78] W. ROSSMANN, Analysis on Real Hyperbolic Spaces (J. Funct. Anal., Vol. 30, 1978, pp. 448-477). Zbl0395.22014MR80f:43021
  32. [Ro 79] W. ROSSMANN, The Structure of Semisimple Symmetric Spaces (Can. J. Math., Vol. 31, 1979, pp. 157-180). Zbl0357.53033MR81i:53042
  33. [S 71] G. SCHIFFMANN, Intégrales d'entrelacement et fonctions de Whittaker (Bull. Soc. Math., France, Vol. 99, 1971, pp. 3-72). Zbl0223.22017MR47 #400
  34. [Schl 84] H. SCHLICHTKRULL, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhöuser, 1984. Zbl0555.43002MR86g:22021
  35. [Schw 50] L. SCHWARTZ, Théorie des distributions, Tome I, Hermann, 1950. Zbl0037.07301MR12,31d
  36. [Str 73] R. S. STRICHARTZ, Harmonic analysis on hyperboloids (J. Funct. Anal., Vol. 12, 1973, pp. 341-383). Zbl0253.43013MR50 #5370
  37. [Va 74] V. S. VARADARAJAN, Lie Groups, Lie Algebras, and their Representations, Prentice Hall, 1974. Zbl0371.22001MR51 #13113
  38. [Va 77] V. S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups (Lecture Notes 576), Springer-Verlag, 1977. Zbl0354.43001MR57 #12789
  39. [Vo 81] D. A. VOGAN, Representations of Real Reductive Lie Groups, (P.M. 15), Birkhöuser, Boston, 1981. Zbl0469.22012MR83c:22022
  40. [War 72] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, 1972. Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.