The existence of equivariant pure free resolutions
David Eisenbud[1]; Gunnar Fløystad[2]; Jerzy Weyman[3]
- [1] Dept of Mathematics Berkeley, CA 94720 (USA)
- [2] Matematisk Institutt Johs. Brunsgt. 12 5008 Bergen (Norway)
- [3] Northeastern University Department of Mathematics 360 Huntington Avenue Boston, MA 02115 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 905-926
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEisenbud, David, Fløystad, Gunnar, and Weyman, Jerzy. "The existence of equivariant pure free resolutions." Annales de l’institut Fourier 61.3 (2011): 905-926. <http://eudml.org/doc/219721>.
@article{Eisenbud2011,
abstract = {Let $A=K[x_1,\dots , x_m]$ be a polynomial ring in $m$ variables and let $\{\bf d\}=(d_0<\cdots < d_m)$ be a strictly increasing sequence of $m+1$ integers. Boij and Söderberg conjectured the existence of graded $A$-modules $M$ of finite length having pure free resolution of type $\mathbf\{d\}$ in the sense that for $i=0,\dots ,m$ the $i$-th syzygy module of $M$ has generators only in degree $d_i$.This paper provides a construction, in characteristic zero, of modules with this property that are also $GL(m)$-equivariant. Moreover, the construction works over rings of the form $A\otimes _K B$ where $A$ is a polynomial ring as above and $B$ is an exterior algebra.},
affiliation = {Dept of Mathematics Berkeley, CA 94720 (USA); Matematisk Institutt Johs. Brunsgt. 12 5008 Bergen (Norway); Northeastern University Department of Mathematics 360 Huntington Avenue Boston, MA 02115 (USA)},
author = {Eisenbud, David, Fløystad, Gunnar, Weyman, Jerzy},
journal = {Annales de l’institut Fourier},
keywords = {Pure resolution; equivariant resolution; Betti diagram; Boij-Söderberg theory; Pieri map; determinantal variety; pure resolution},
language = {eng},
number = {3},
pages = {905-926},
publisher = {Association des Annales de l’institut Fourier},
title = {The existence of equivariant pure free resolutions},
url = {http://eudml.org/doc/219721},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Eisenbud, David
AU - Fløystad, Gunnar
AU - Weyman, Jerzy
TI - The existence of equivariant pure free resolutions
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 905
EP - 926
AB - Let $A=K[x_1,\dots , x_m]$ be a polynomial ring in $m$ variables and let ${\bf d}=(d_0<\cdots < d_m)$ be a strictly increasing sequence of $m+1$ integers. Boij and Söderberg conjectured the existence of graded $A$-modules $M$ of finite length having pure free resolution of type $\mathbf{d}$ in the sense that for $i=0,\dots ,m$ the $i$-th syzygy module of $M$ has generators only in degree $d_i$.This paper provides a construction, in characteristic zero, of modules with this property that are also $GL(m)$-equivariant. Moreover, the construction works over rings of the form $A\otimes _K B$ where $A$ is a polynomial ring as above and $B$ is an exterior algebra.
LA - eng
KW - Pure resolution; equivariant resolution; Betti diagram; Boij-Söderberg theory; Pieri map; determinantal variety; pure resolution
UR - http://eudml.org/doc/219721
ER -
References
top- A. Berele, A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math. 64 (1987), 118-175 Zbl0617.17002MR884183
- M. Boij, J. Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Journal of the London Mathematical Society (2) 79 (2008), 85-106 Zbl1189.13008MR2427053
- D. A. Buchsbaum, D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Advances in Math. 18 (1975), 245-301 Zbl0336.13007MR396528
- D. A. Buchsbaum, D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension , Amer. J. Math. 99 (1977), 447-485 Zbl0373.13006MR453723
- M. Demazure, A very simple proof of Bott’s theorem, Inventiones Mathematicae 34 (1976), 271-272 Zbl0383.14017MR414569
- D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, (1995), Springer Zbl0819.13001MR1322960
- D. Eisenbud, F. Schreyer, Betti Numbers of Graded Modules and Cohomology of Vector Bundles, Journal of the American Mathematical Society 22 (2009), 859-888 Zbl1213.13032MR2505303
- D. Eisenbud, J. Weyman, Fitting’s Lemma for -graded modules, Trans. Am. Math. Soc. 355 (2003), 4451-4473 Zbl1068.13001MR1990758
- G. Fløystad, Exterior algebra resolutions arising from homogeneous bundles, Math. Scand. 94 (2004), 191-201 Zbl1062.14023MR2053739
- G. Fløystad, The linear space of Betti diagrams of multigraded artinian modules, Mathematical Research Letters 17 (2010), 943-958 Zbl1225.13017MR2727620
- W. Fulton, J. Harris, Representation Theory; a first course, (1991), Springer-Verlag Zbl0744.22001MR1153249
- J. Herzog, M. Kühl, On the Betti numbers of finite pure and linear resolutions, Comm. Algebra 12 (1984), 1627-1646 Zbl0543.13008MR743307
- D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. (2) 7 (1974), 523-530 Zbl0274.18018MR337939
- I. G. Macdonald, Symmetric functions and Hall polynomials, (1995), Oxford University Press, New York Zbl0487.20007MR1354144
- C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. des Hautes Études Sci. Publ. Math. (1973), 47-119 Zbl0268.13008MR374130
- S. Sam, J. Weyman, Pieri Resolutions for Classical Groups Zbl1245.20060
- J. Weyman, Cohomology of vector bundles and syzygies, (2003), Cambridge University Press, Cambridge Zbl1075.13007MR1988690
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.