Page 1 Next

Displaying 1 – 20 of 78

Showing per page

About G-rings

Najib Mahdou (2017)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if R T is a ring extension such that m T R for some regular element m of T , then T is a G-ring if and only if so is R . Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.

An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity

H.-Ch. Graf von Bothmer, Wolfgang Ebeling, Xavier Gómez-Mont (2008)

Annales de l’institut Fourier

Let ( V , 0 ) be a germ of a complete intersection variety in n + k , n > 0 , having an isolated singularity at 0 and X be the germ of a holomorphic vector field having an isolated zero at 0 and tangent to V . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of X is also isolated in the ambient space n + k we give a formula for the homological index in terms of local linear algebra.

Bornes pour la régularité de Castelnuovo-Mumford des schémas non lisses

Amadou Lamine Fall (2009)

Annales de l’institut Fourier

Nous montrons dans cet article des bornes pour la régularité de Castelnuovo-Mumford d’un schéma admettant des singularités, en fonction des degrés des équations définissant le schéma, de sa dimension et de la dimension de son lieu singulier. Dans le cas où les singularités sont isolées, nous améliorons la borne fournie par Chardin et Ulrich et dans le cas général, nous établissons une borne doublement exponentielle en la dimension du lieu singulier.

Bounds on Castelnuovo-Mumford regularity for divisors on rational normal scrolls.

Chikashi Miyazaki (2005)

Collectanea Mathematica

The Castelnuovo-Mumford regularity is one of the most important invariants in studying the minimal free resolution of the defining ideals of the projective varieties. There are some bounds on the Castelnuovo-Mumford regularity of the projective variety in terms of the other basic invariants such as dimension, codimension and degree. This paper studies a bound on the regularity conjectured by Hoa, and shows this bound and extremal examples in the case of divisors on rational normal scrolls.

Castelnuovo-Mumford regularity of products of ideals.

Aldo Conca, Jürgen Herzog (2003)

Collectanea Mathematica

The Castelnuovo-Mumford regularity reg(M) is one of the most important invariants of a finitely generated graded module M over a polynomial ring R. For instance, it measures the amount of computational resources that working with M requires. In general one knows that the regularity of a module can be doubly exponential in the degrees of the minimal generators and in the number of the variables. On the other hand, in many situations one has or one conjectures a much better behavior. One may ask,...

Combinatoric of syzygies for semigroup algebras.

Emilio Briales, Pilar Pisón, Antonio Campillo, Carlos Marijuán (1998)

Collectanea Mathematica

We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.

Deforming syzygies of liftable modules and generalised Knörrer functors

Runar Ile (2007)

Collectanea Mathematica

Maps between deformation functors of modules are given which generalise the maps induced by the Knörrer functors. These maps become isomorphisms after introducing certain equations in the target functor restricting the Zariski tangent space. Explicit examples are given on how the isomorphisms extend results about deformation theory and classification of MCM modules to higher dimensions.

Existence of Gorenstein projective resolutions and Tate cohomology

Peter Jørgensen (2007)

Journal of the European Mathematical Society

Existence of proper Gorenstein projective resolutions and Tate cohomology is proved over rings with a dualizing complex. The proofs are based on Bousfield Localization which is originally a method from algebraic topology.

Currently displaying 1 – 20 of 78

Page 1 Next