Maximal subextensions of plurisubharmonic functions
U. Cegrell[1]; S. Kołodziej[2]; A. Zeriahi[3]
- [1] Department of Mathematics, University of Umea, S-90187 Umea, Sweden.
- [2] Jagiellonian University, Institute of Mathematics, Łojasiewicza 6, 30-348 Kraków, Poland.
- [3] Institut de Mathématiques de Toulouse, UPS, 118 Route de Narbonne, 31062 Toulouse cedex, France.
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: S2, page 101-122
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topCegrell, U., Kołodziej, S., and Zeriahi, A.. "Maximal subextensions of plurisubharmonic functions." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 101-122. <http://eudml.org/doc/219735>.
@article{Cegrell2011,
abstract = {In our earlier paper [CKZ], we proved that any plurisubharmonic function on a bounded hyperconvex domain in $\mathbb\{C\}^ n$ with zero boundary values in a quite general sense, admits a plurisubharmonic subextension to a larger hyperconvex domain. Here we study important properties of its maximal subextension and give informations on its Monge-Ampère measure. More generally, given a quasi-plurisubharmonic function $\varphi $ on a given quasi-hyperconvex domain $D \subset X$ of a compact Kähler manifold $(X,\omega )$, with well defined Monge-Ampère measure such that $\int _D (\omega + dd^c \varphi )^n \le \int _X \omega ^ n$, we prove that $\varphi $ admits a global quasi-plurisubharmonic subextension $\tilde\{\varphi \}$ to the whole manifold $X$. If moreover $(\omega + dd^c \varphi )^n$ puts no mass on pluripolar sets of $D$, the maximal subextension is shown to have a well defined global Monge-Ampère measure on $X$. Moreover we give a good control on the weigthed energy of the subextension in terms of the weigthed energy of the original function. Finally we provide an exemple in $\{\mathbb\{P\}\}^2$ which shows that in general the maximal subextension do not have a well defined Monge-Ampère measure on $\{\{\mathbb\{P\}\}\}^2$ if the original function concentrates some mass in an analytic disc.},
affiliation = {Department of Mathematics, University of Umea, S-90187 Umea, Sweden.; Jagiellonian University, Institute of Mathematics, Łojasiewicza 6, 30-348 Kraków, Poland.; Institut de Mathématiques de Toulouse, UPS, 118 Route de Narbonne, 31062 Toulouse cedex, France.},
author = {Cegrell, U., Kołodziej, S., Zeriahi, A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {plurisubharmonic function; subextension; Monge-Ampère measure; quasiplurisubharmonic function; hyperconvex domain; Lelong class},
language = {eng},
month = {4},
number = {S2},
pages = {101-122},
publisher = {Université Paul Sabatier, Toulouse},
title = {Maximal subextensions of plurisubharmonic functions},
url = {http://eudml.org/doc/219735},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Cegrell, U.
AU - Kołodziej, S.
AU - Zeriahi, A.
TI - Maximal subextensions of plurisubharmonic functions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 101
EP - 122
AB - In our earlier paper [CKZ], we proved that any plurisubharmonic function on a bounded hyperconvex domain in $\mathbb{C}^ n$ with zero boundary values in a quite general sense, admits a plurisubharmonic subextension to a larger hyperconvex domain. Here we study important properties of its maximal subextension and give informations on its Monge-Ampère measure. More generally, given a quasi-plurisubharmonic function $\varphi $ on a given quasi-hyperconvex domain $D \subset X$ of a compact Kähler manifold $(X,\omega )$, with well defined Monge-Ampère measure such that $\int _D (\omega + dd^c \varphi )^n \le \int _X \omega ^ n$, we prove that $\varphi $ admits a global quasi-plurisubharmonic subextension $\tilde{\varphi }$ to the whole manifold $X$. If moreover $(\omega + dd^c \varphi )^n$ puts no mass on pluripolar sets of $D$, the maximal subextension is shown to have a well defined global Monge-Ampère measure on $X$. Moreover we give a good control on the weigthed energy of the subextension in terms of the weigthed energy of the original function. Finally we provide an exemple in ${\mathbb{P}}^2$ which shows that in general the maximal subextension do not have a well defined Monge-Ampère measure on ${{\mathbb{P}}}^2$ if the original function concentrates some mass in an analytic disc.
LA - eng
KW - plurisubharmonic function; subextension; Monge-Ampère measure; quasiplurisubharmonic function; hyperconvex domain; Lelong class
UR - http://eudml.org/doc/219735
ER -
References
top- Åhag (P.), Cegrell (U.), Czyz (R.), Pham (R.H.H.).— Monge-Ampère measures on pluripolar sets. J. Math. Pures Appl. 92, p. 613-627 (2009). Zbl1186.32012MR2565845
- Benelkourchi (S.), Guedj (V.), Zeriahi (A.).— Plurisubharmonic functions with weak singularities, Acta Universitatis Upsaliensis, Proceedings of the conference in honor of C.Kiselman (Kiselmanfest, Uppsala, May 2006), (2009). Zbl1200.32021MR2742673
- Bedford (E.), Taylor (B.A.).— The Dirichlet problem for the complex Monge-Ampère operator. Invent. Math. 37, p. 1-44 (1976). Zbl0315.31007MR445006
- Bedford (E.), Taylor (B.A.).— A new capacity for plurisubharmonic functions, Acta Math., 149, p. 1-40 (1982). Zbl0547.32012MR674165
- Bedford (E.), Taylor (B.A.).— Fine topology, Šilov boundary, and , J. Funct. Anal. 72, no. 2, p. 225-251 (1987). Zbl0677.31005MR886812
- Cegrell (U.).— Pluricomplex energy, Acta Math., 180, p. 187-217 (1998). Zbl0926.32042MR1638768
- Cegrell (U.).— The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier, 51, p. 159-179 (2004). Zbl1065.32020MR2069125
- Cegrell (U.).— A general Dirichlet problem for the Complex Monge-Ampère operator. Ann. Pol. Math. 94.2, p. 131-147 (2008). Zbl1166.32017MR2438854
- Cegrell (U.).— Removable singularities for plurisubharmonic functions and related problems. Proc. London Math. Soc. 36, p. 310-326 (1978). Zbl0375.32013MR484969
- Cegrell (U.), Hed (L.).— Subextension and approximation of negative plurisubharmonic functions. Michigan Math. J. Vol 56:3, p. 593-601 (2008). Zbl1161.32017MR2490648
- Cegrell (U.), Kołodziej (S.), Zeriahi (A.).— Subextension of plurisubharmonic functions with weak singularities. Math. Z. 250, p. 7-22 (2005). Zbl1080.32032MR2136402
- Cegrell (U.), Zeriahi (A.).— Subextension of plurisubharmonic functions with bounded Monge-Ampère mass. C. R. Acad. Sci. Paris 336, no. 4, p. 305-308 (2003). Zbl1025.31005MR1976308
- Coman (D.).— Certain classes of pluricomplex Green functions on . Math. Z. 235, p. 111-122 (2000). Zbl0966.32021MR1785074
- Coman (D.), Guedj (V.), Zeriahi (A.).— Domains of definition of Monge-Ampère operators on compact Kähler manifolds Math. Z. 259, p. 393-418 (2008). Zbl1137.32015MR2390088
- Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds J. Geom. Anal. 15, no. 4, p. 607-639 (2005). Zbl1087.32020MR2203165
- Guedj (V), Zeriahi (A.).— The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250, p. 442-482 (2007). Zbl1143.32022MR2352488
- Pham (H.H.).— Pluripolar sets and the subextension in Cegrell’s classes. Complex Var. Elliptic Equ. 53, p. 675-684 (2008). Zbl1169.32011MR2431349
- Siu (Y.T.).— Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, p. 53-156 (1974). Zbl0289.32003MR352516
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.