On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus
Erwan Lanneau[1]; Jean-Luc Thiffeault[2]
- [1] Université du Sud Toulon-Var and Fédération de Recherches des Unités de Mathématiques de Marseille Centre de Physique Théorique (CPT) UMR CNRS 6207,Luminy, Case 907 13288 Marseille Cedex 9 (France)
- [2] University of Wisconsin Department of Mathematics Van Vleck Hall, 480 Lincoln Drive Madison, WI 53706 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 1, page 105-144
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLanneau, Erwan, and Thiffeault, Jean-Luc. "On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus." Annales de l’institut Fourier 61.1 (2011): 105-144. <http://eudml.org/doc/219738>.
@article{Lanneau2011,
abstract = {We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus $g=2$ to $5$, the minimum dilatation is the smallest Salem number for polynomials of degree $2g$.},
affiliation = {Université du Sud Toulon-Var and Fédération de Recherches des Unités de Mathématiques de Marseille Centre de Physique Théorique (CPT) UMR CNRS 6207,Luminy, Case 907 13288 Marseille Cedex 9 (France); University of Wisconsin Department of Mathematics Van Vleck Hall, 480 Lincoln Drive Madison, WI 53706 (USA)},
author = {Lanneau, Erwan, Thiffeault, Jean-Luc},
journal = {Annales de l’institut Fourier},
keywords = {Pseudo-Anosov homeomorphism; small dilatation; flat surface; pseudo-Anosov homeomorphism},
language = {eng},
number = {1},
pages = {105-144},
publisher = {Association des Annales de l’institut Fourier},
title = {On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus},
url = {http://eudml.org/doc/219738},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Lanneau, Erwan
AU - Thiffeault, Jean-Luc
TI - On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 105
EP - 144
AB - We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus $g=2$ to $5$, the minimum dilatation is the smallest Salem number for polynomials of degree $2g$.
LA - eng
KW - Pseudo-Anosov homeomorphism; small dilatation; flat surface; pseudo-Anosov homeomorphism
UR - http://eudml.org/doc/219738
ER -
References
top- J. W. Aaber, N. M. Dunfield, Closed surface bundles of least volume, (2010) Zbl1205.57018
- Pierre Arnoux, Jean-Christophe Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 75-78 Zbl0478.58023MR610152
- Gavin Band, Philip Boyland, The Burau estimate for the entropy of a braid, Algebr. Geom. Topol. 7 (2007), 1345-1378 Zbl1128.37028MR2350285
- David W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), 1361-1377 Zbl0447.12002MR583514
- Robert F. Brown, The Lefschetz fixed point theorem, (1971), Scott, Foresman and Co., Glenview, Ill.-London Zbl0216.19601MR283793
- Andrew J. Casson, Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9 (1988), Cambridge University Press, Cambridge Zbl0649.57008MR964685
- Jin-Hwan Cho, Ji-Young Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008), 257-267 Zbl1153.37375MR2455699
- Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics 74 (2006), 11-55, Amer. Math. Soc., Providence, RI Zbl1191.57015MR2264130
- A. Fathi, F. Laudenbach, V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66–67 (1979), Société Mathématique de France MR568308
- Matthew D. Finn, Jean-Luc Thiffeault, N. Jewell, Topological entropy of braids on arbitrary surfaces, (2010)
- Eriko Hironaka, Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid, (2009) Zbl1221.57028
- Eriko Hironaka, Eiko Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006), 699-738 (electronic) Zbl1126.37014MR2240913
- N. V. Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 111-116, 191 Zbl0693.57007MR964259
- R. Kenyon, J. Smillie, Billiards in rational-angled triangles, Comment. Math. Helv. 75 (2000), 65-108 Zbl0967.37019MR1760496
- E. Kin, M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, (2010) Zbl1270.57044
- Erwan Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv. 79 (2004), 471-501 Zbl1054.32007MR2081723
- Erwan Lanneau, Jean-Luc Thiffeault, Enumerating Pseudo-Anosov Homeomorphisms of the Punctured Disc, (2010) Zbl1237.37027
- Frédéric Le Roux, Homéomorphismes de surfaces: théorèmes de la fleur de Leau-Fatou et de la variété stable, Astérisque (2004) MR2068866
- Christopher J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004), 1301-1359 (electronic) Zbl1088.57002MR2119298
- S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc. 18 (2005), 823-872 (electronic) Zbl1112.37002MR2163864
- Howard Masur, John Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993), 289-307 Zbl0792.30030MR1214233
- Howard Masur, Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A (2002), 1015-1089, North-Holland, Amsterdam Zbl1057.37034MR1928530
- Curtis T. McMullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann. 333 (2005), 87-130 Zbl1086.14024MR2169830
- J.-O. Moussafir, On the Entropy of Braids, Func. Anal. and Other Math. 1 (2006), 43-54 MR2381961
- R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443-450 Zbl0726.57013MR1068128
- Ch. Pisot, R. Salem, Distribution modulo of the powers of real numbers larger than , Compositio Math. 16 (1964), 164-168 (1964) Zbl0131.04804MR174547
- Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018MR543205
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431 Zbl0674.57008MR956596
- William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242 Zbl0486.28014MR644019
- A. Yu. Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995), 197-198 Zbl0847.58057MR1331364
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.