On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus

Erwan Lanneau[1]; Jean-Luc Thiffeault[2]

  • [1] Université du Sud Toulon-Var and Fédération de Recherches des Unités de Mathématiques de Marseille Centre de Physique Théorique (CPT) UMR CNRS 6207,Luminy, Case 907 13288 Marseille Cedex 9 (France)
  • [2] University of Wisconsin Department of Mathematics Van Vleck Hall, 480 Lincoln Drive Madison, WI 53706 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 105-144
  • ISSN: 0373-0956

Abstract

top
We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus g = 2 to 5 , the minimum dilatation is the smallest Salem number for polynomials of degree 2 g .

How to cite

top

Lanneau, Erwan, and Thiffeault, Jean-Luc. "On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus." Annales de l’institut Fourier 61.1 (2011): 105-144. <http://eudml.org/doc/219738>.

@article{Lanneau2011,
abstract = {We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus $g=2$ to $5$, the minimum dilatation is the smallest Salem number for polynomials of degree $2g$.},
affiliation = {Université du Sud Toulon-Var and Fédération de Recherches des Unités de Mathématiques de Marseille Centre de Physique Théorique (CPT) UMR CNRS 6207,Luminy, Case 907 13288 Marseille Cedex 9 (France); University of Wisconsin Department of Mathematics Van Vleck Hall, 480 Lincoln Drive Madison, WI 53706 (USA)},
author = {Lanneau, Erwan, Thiffeault, Jean-Luc},
journal = {Annales de l’institut Fourier},
keywords = {Pseudo-Anosov homeomorphism; small dilatation; flat surface; pseudo-Anosov homeomorphism},
language = {eng},
number = {1},
pages = {105-144},
publisher = {Association des Annales de l’institut Fourier},
title = {On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus},
url = {http://eudml.org/doc/219738},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Lanneau, Erwan
AU - Thiffeault, Jean-Luc
TI - On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 105
EP - 144
AB - We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus $g=2$ to $5$, the minimum dilatation is the smallest Salem number for polynomials of degree $2g$.
LA - eng
KW - Pseudo-Anosov homeomorphism; small dilatation; flat surface; pseudo-Anosov homeomorphism
UR - http://eudml.org/doc/219738
ER -

References

top
  1. J. W. Aaber, N. M. Dunfield, Closed surface bundles of least volume, (2010) Zbl1205.57018
  2. Pierre Arnoux, Jean-Christophe Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 75-78 Zbl0478.58023MR610152
  3. Gavin Band, Philip Boyland, The Burau estimate for the entropy of a braid, Algebr. Geom. Topol. 7 (2007), 1345-1378 Zbl1128.37028MR2350285
  4. David W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), 1361-1377 Zbl0447.12002MR583514
  5. Robert F. Brown, The Lefschetz fixed point theorem, (1971), Scott, Foresman and Co., Glenview, Ill.-London Zbl0216.19601MR283793
  6. Andrew J. Casson, Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9 (1988), Cambridge University Press, Cambridge Zbl0649.57008MR964685
  7. Jin-Hwan Cho, Ji-Young Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008), 257-267 Zbl1153.37375MR2455699
  8. Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics 74 (2006), 11-55, Amer. Math. Soc., Providence, RI Zbl1191.57015MR2264130
  9. A. Fathi, F. Laudenbach, V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66–67 (1979), Société Mathématique de France MR568308
  10. Matthew D. Finn, Jean-Luc Thiffeault, N. Jewell, Topological entropy of braids on arbitrary surfaces, (2010) 
  11. Eriko Hironaka, Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid, (2009) Zbl1221.57028
  12. Eriko Hironaka, Eiko Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006), 699-738 (electronic) Zbl1126.37014MR2240913
  13. N. V. Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 111-116, 191 Zbl0693.57007MR964259
  14. R. Kenyon, J. Smillie, Billiards in rational-angled triangles, Comment. Math. Helv. 75 (2000), 65-108 Zbl0967.37019MR1760496
  15. E. Kin, M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, (2010) Zbl1270.57044
  16. Erwan Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv. 79 (2004), 471-501 Zbl1054.32007MR2081723
  17. Erwan Lanneau, Jean-Luc Thiffeault, Enumerating Pseudo-Anosov Homeomorphisms of the Punctured Disc, (2010) Zbl1237.37027
  18. Frédéric Le Roux, Homéomorphismes de surfaces: théorèmes de la fleur de Leau-Fatou et de la variété stable, Astérisque (2004) MR2068866
  19. Christopher J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004), 1301-1359 (electronic) Zbl1088.57002MR2119298
  20. S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc. 18 (2005), 823-872 (electronic) Zbl1112.37002MR2163864
  21. Howard Masur, John Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993), 289-307 Zbl0792.30030MR1214233
  22. Howard Masur, Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A (2002), 1015-1089, North-Holland, Amsterdam Zbl1057.37034MR1928530
  23. Curtis T. McMullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann. 333 (2005), 87-130 Zbl1086.14024MR2169830
  24. J.-O. Moussafir, On the Entropy of Braids, Func. Anal. and Other Math. 1 (2006), 43-54 MR2381961
  25. R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443-450 Zbl0726.57013MR1068128
  26. Ch. Pisot, R. Salem, Distribution modulo 1 of the powers of real numbers larger than 1 , Compositio Math. 16 (1964), 164-168 (1964) Zbl0131.04804MR174547
  27. Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018MR543205
  28. William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431 Zbl0674.57008MR956596
  29. William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242 Zbl0486.28014MR644019
  30. A. Yu. Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995), 197-198 Zbl0847.58057MR1331364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.