Explicit Hecke series for symplectic group of genus 4

Kirill Vankov[1]

  • [1] Université de Franche-Comté Laboratoire de mathématiques de Besançon UFR Sciences et techniques 16 route de Gray 25030 Besançon, France

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 279-298
  • ISSN: 1246-7405

Abstract

top
Shimura conjectured the rationality of the generating series for Hecke operators for the symplectic group of genus n . This conjecture was proved by Andrianov for arbitrary genus n , but the explicit expression was out of reach for genus higher than 3. For genus n = 4 , we explicitly compute the rational fraction in this conjecture. Using formulas for images of double cosets under the Satake spherical map, we first compute the sum of the generating series, which is a rational fraction with polynomial coefficients. Then we recover the coefficients of this fraction as elements of the Hecke algebra using polynomial representation of basis Hecke operators under the spherical map. Numerical examples of these fractions for special choice of Satake parameters are given.

How to cite

top

Vankov, Kirill. "Explicit Hecke series for symplectic group of genus 4." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 279-298. <http://eudml.org/doc/219742>.

@article{Vankov2011,
abstract = {Shimura conjectured the rationality of the generating series for Hecke operators for the symplectic group of genus $n$. This conjecture was proved by Andrianov for arbitrary genus $n$, but the explicit expression was out of reach for genus higher than 3. For genus $n=4$, we explicitly compute the rational fraction in this conjecture. Using formulas for images of double cosets under the Satake spherical map, we first compute the sum of the generating series, which is a rational fraction with polynomial coefficients. Then we recover the coefficients of this fraction as elements of the Hecke algebra using polynomial representation of basis Hecke operators under the spherical map. Numerical examples of these fractions for special choice of Satake parameters are given.},
affiliation = {Université de Franche-Comté Laboratoire de mathématiques de Besançon UFR Sciences et techniques 16 route de Gray 25030 Besançon, France},
author = {Vankov, Kirill},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {279-298},
publisher = {Société Arithmétique de Bordeaux},
title = {Explicit Hecke series for symplectic group of genus 4},
url = {http://eudml.org/doc/219742},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Vankov, Kirill
TI - Explicit Hecke series for symplectic group of genus 4
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 279
EP - 298
AB - Shimura conjectured the rationality of the generating series for Hecke operators for the symplectic group of genus $n$. This conjecture was proved by Andrianov for arbitrary genus $n$, but the explicit expression was out of reach for genus higher than 3. For genus $n=4$, we explicitly compute the rational fraction in this conjecture. Using formulas for images of double cosets under the Satake spherical map, we first compute the sum of the generating series, which is a rational fraction with polynomial coefficients. Then we recover the coefficients of this fraction as elements of the Hecke algebra using polynomial representation of basis Hecke operators under the spherical map. Numerical examples of these fractions for special choice of Satake parameters are given.
LA - eng
UR - http://eudml.org/doc/219742
ER -

References

top
  1. A. N. Andrianov, Shimura’s conjecture for Siegel’s modular group of genus 3. Dokl. Akad. Nauk SSSR 177(3) (1967), 755–758, (Soviet Math. Dokl. 8 (1967), 1474–1478). Zbl0167.07001MR224559
  2. A. N. Andrianov, Rationality of multiple Hecke series of the full linear group and Shimura’s hypothesis on Hecke series of the symplectic group. Dokl. Akad. Nauk SSSR 183 (1968), 9–11, (Soviet Math. Dokl. 9 (1968), 1295–1297). Zbl0191.51703MR241365
  3. A. N. Andrianov, Rationality theorems for Hecke series and Zeta functions of the groups GL n and Sp n over local fields. Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 466–505, (Math. USSR – Izvestija, Vol. 3 (1969), No. 3, 439–476). Zbl0236.20033MR262168
  4. A. N. Andrianov, Spherical functions for GL n over local fields, and the summation of Hecke series. Math. USSR Sbornik 12(3) (1970), 429–452, (Mat. Sb. (N.S.) 83(125) (1970), 429–451). Zbl0272.22008MR282982
  5. A. N. Andrianov, Euler products that correspond to Siegel’s modular forms of genus 2 . Russian Mathematical Surveys 177 (1974), 45–116, (Uspekhi Mat. Nauk 29(3) (1974), 43–110). Zbl0304.10021MR432552
  6. A. N. Andrianov, Quadratic forms and Hecke operators, volume 286 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1987. Zbl0613.10023MR884891
  7. A. N. Andrianov, V. G. Zhuravlëv, Modular forms and Hecke operators, volume 145 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1995. Zbl0838.11032MR1349824
  8. E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, II. Math. Ann. 114(1) (1937), 1–28, 316–351. Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht, 1959, 644–707. Zbl0015.40202MR1513142
  9. T. Hina, T. Sugano, On the local Hecke series of some classical groups over p -adic fields. J. Math. Soc. Japan 35(1) (1938), 133–152. Zbl0496.14014MR679080
  10. I. Miyawaki, Numerical examples of Siegel cusp forms of degree 3 and their zeta-functions. Mem. Fac. Sci. Kyushu Univ. Ser. A, 46(2) (1992), 307–339. Zbl0780.11022MR1195472
  11. A. Panchishkin, Produits d’Euler attachés aux formes modulaires de Siegel. Exposé au séminaire Groupes Réductifs et Formes Automorphes à l’Institut de Mathématiques de Jussieu, June 2006. 
  12. A. Panchishkin, K. Vankov, Explicit Shimura’s conjecture for Sp 3 on a computer. Math. Res. Lett. 14(2) (2007), 173–187. Zbl1163.11039MR2318617
  13. A. Panchishkin, K. Vankov, Explicit formulas for Hecke operators and Rankin’s lemma in higher genus. In Algebra, Arithmetic and Geometry. In Honor of Yu.I. Manin, volume 269–270 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 2010. Zbl1246.11105
  14. G. Shimura, On modular correspondences for S p ( n , Z ) and their congruence relations. Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 824–828. Zbl0122.08803MR157009
  15. G. Shimura, Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo and Princeton University Press, Princeton, N.J, 1971. Kanô Memorial Lectures, No. 1. Zbl0221.10029MR314766
  16. K. Vankov, The image of a local Hecke series of genus four under a spherical mapping. Mat. Zametki, 81(5) (2007), 676–680. Zbl1201.11049MR2348817
  17. K. Vankov, Hecke algebras, generating series and applications, Thèse de Doctorat de l’Université Joseph Fourier. oai:tel.archives-ouvertes.fr:tel-00349767_v1, November 2008. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.