The Evolution of the Weyl Tensor under the Ricci Flow
Giovanni Catino[1]; Carlo Mantegazza[2]
- [1] SISSA International School for Advanced Studies Via Bonomea 265 Trieste 34136 (Italy)
- [2] Scuola Normale Superiore di Pisa P.za Cavalieri 7 Pisa 56126 (Italy)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1407-1435
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCatino, Giovanni, and Mantegazza, Carlo. "The Evolution of the Weyl Tensor under the Ricci Flow." Annales de l’institut Fourier 61.4 (2011): 1407-1435. <http://eudml.org/doc/219748>.
@article{Catino2011,
abstract = {We compute the evolution equation of the Weyl tensor under the Ricci flow of a Riemannian manifold and we discuss some consequences for the classification of locally conformally flat Ricci solitons.},
affiliation = {SISSA International School for Advanced Studies Via Bonomea 265 Trieste 34136 (Italy); Scuola Normale Superiore di Pisa P.za Cavalieri 7 Pisa 56126 (Italy)},
author = {Catino, Giovanni, Mantegazza, Carlo},
journal = {Annales de l’institut Fourier},
keywords = {Ricci solitons; singularity of Ricci flow},
language = {eng},
number = {4},
pages = {1407-1435},
publisher = {Association des Annales de l’institut Fourier},
title = {The Evolution of the Weyl Tensor under the Ricci Flow},
url = {http://eudml.org/doc/219748},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Catino, Giovanni
AU - Mantegazza, Carlo
TI - The Evolution of the Weyl Tensor under the Ricci Flow
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1407
EP - 1435
AB - We compute the evolution equation of the Weyl tensor under the Ricci flow of a Riemannian manifold and we discuss some consequences for the classification of locally conformally flat Ricci solitons.
LA - eng
KW - Ricci solitons; singularity of Ricci flow
UR - http://eudml.org/doc/219748
ER -
References
top- P. Baird, L. Danielo, Three–dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007), 65-91 Zbl1128.53020MR2339469
- A. L. Besse, Einstein manifolds, (2008), Springer–Verlag, Berlin Zbl0613.53001MR2371700
- C. Böhm, B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), 1079-1097 Zbl1185.53073MR2415394
- M. Brozos-Vázquez, E. García-Río, R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, J. Math. Phys. 46 (2005) Zbl1076.53084MR2121707
- R. L. Bryant, Local existence of gradient Ricci solitons, (1987)
- H.-D. Cao, Q. Chen, On locally conformally flat gradient steady Ricci solitons, (2009)
- X. Cao, B. Wang, Z. Zhang, On locally conformally flat gradient shrinking Ricci solitons, (2008) Zbl1215.53061
- B.-L. Chen, Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), 363-382 Zbl1177.53036MR2520796
- B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part I. Geometric aspects, 135 (2007), American Mathematical Society, Providence, RI Zbl1216.53057MR2302600
- B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part II. Analytic aspects, 144 (2008), American Mathematical Society, Providence, RI Zbl1216.53057MR2365237
- B. Chow, P. Lu, L. Ni, Hamilton’s Ricci flow, 77 (2006), American Mathematical Society, Providence, RI Zbl1118.53001
- A. Derdzinski, Some remarks on the local structure of Codazzi tensors, Global differential geometry and global analysis (Berlin, 1979) 838 (1981), 243-299, Springer–Verlag, Berlin Zbl0437.53012
- M. Eminenti, G. La Nave, C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), 345-367 Zbl1160.53031MR2448435
- M. Fernández–López, E. García–Río, Rigidity of shrinking Ricci solitons, (2009) Zbl1226.53047
- S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, (1990), Springer–Verlag Zbl0716.53001MR1083149
- R. S. Hamilton, Three–manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306 Zbl0504.53034MR664497
- R. S. Hamilton, Four–manifolds with positive curvature operator, J. Diff. Geom. 24 (1986), 153-179 Zbl0628.53042MR862046
- R. S. Hamilton, Eternal solutions to the Ricci flow, J. Diff. Geom. 38 (1993), 1-11 Zbl0792.53041MR1231700
- R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), 545-572 Zbl0840.53029MR1333936
- R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) (1995), 7-136, Int. Press, Cambridge, MA Zbl0867.53030MR1375255
- S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), 209-215 Zbl0387.53014MR535555
- S. Hiepko, H. Reckziegel, Über sphärische Blätterungen und die Vollständigkeit ihrer Blätter, Manuscripta Math. 31 (1980), 269-283 Zbl0441.53035MR576500
- B. Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific J. Math. 236 (2008), 73-88 Zbl1152.53056MR2398988
- L. Ma, L. Cheng, On the conditions to control curvature tensors or Ricci flow, Ann. Global Anal. Geom. 37 (2010), 403-411 Zbl1188.35033MR2601499
- O. Munteanu, N. Sesum, On gradient Ricci solitons, (2009) Zbl1275.53061
- A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math 645 (2010), 125-153 Zbl1196.53041MR2673425
- L. Ni, N. Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008), 941-955 Zbl1158.53052MR2443993
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, (2002) Zbl1130.53001
- P. Petersen, W. Wylie, On the classification of gradient Ricci solitons, (2007) Zbl1202.53049
- P. Petersen, W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), 329-345 Zbl1176.53048MR2507581
- N. Sesum, Convergence of the Ricci flow toward a soliton, Comm. Anal. Geom. 14 (2006), 283-343 Zbl1106.53045MR2255013
- R. Tojeiro, Conformal de Rham decomposition of Riemannian manifolds, Houston J. Math. 32 (2006), 725-743 (electronic) Zbl1116.53044MR2247906
- Z.-H. Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009), 189-200 Zbl1171.53332MR2525510
- Z.-H. Zhang, On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009), 2755-2759 Zbl1176.53046MR2497489
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.