The Evolution of the Weyl Tensor under the Ricci Flow

Giovanni Catino[1]; Carlo Mantegazza[2]

  • [1] SISSA International School for Advanced Studies Via Bonomea 265 Trieste 34136 (Italy)
  • [2] Scuola Normale Superiore di Pisa P.za Cavalieri 7 Pisa 56126 (Italy)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1407-1435
  • ISSN: 0373-0956

Abstract

top
We compute the evolution equation of the Weyl tensor under the Ricci flow of a Riemannian manifold and we discuss some consequences for the classification of locally conformally flat Ricci solitons.

How to cite

top

Catino, Giovanni, and Mantegazza, Carlo. "The Evolution of the Weyl Tensor under the Ricci Flow." Annales de l’institut Fourier 61.4 (2011): 1407-1435. <http://eudml.org/doc/219748>.

@article{Catino2011,
abstract = {We compute the evolution equation of the Weyl tensor under the Ricci flow of a Riemannian manifold and we discuss some consequences for the classification of locally conformally flat Ricci solitons.},
affiliation = {SISSA International School for Advanced Studies Via Bonomea 265 Trieste 34136 (Italy); Scuola Normale Superiore di Pisa P.za Cavalieri 7 Pisa 56126 (Italy)},
author = {Catino, Giovanni, Mantegazza, Carlo},
journal = {Annales de l’institut Fourier},
keywords = {Ricci solitons; singularity of Ricci flow},
language = {eng},
number = {4},
pages = {1407-1435},
publisher = {Association des Annales de l’institut Fourier},
title = {The Evolution of the Weyl Tensor under the Ricci Flow},
url = {http://eudml.org/doc/219748},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Catino, Giovanni
AU - Mantegazza, Carlo
TI - The Evolution of the Weyl Tensor under the Ricci Flow
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1407
EP - 1435
AB - We compute the evolution equation of the Weyl tensor under the Ricci flow of a Riemannian manifold and we discuss some consequences for the classification of locally conformally flat Ricci solitons.
LA - eng
KW - Ricci solitons; singularity of Ricci flow
UR - http://eudml.org/doc/219748
ER -

References

top
  1. P. Baird, L. Danielo, Three–dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007), 65-91 Zbl1128.53020MR2339469
  2. A. L. Besse, Einstein manifolds, (2008), Springer–Verlag, Berlin Zbl0613.53001MR2371700
  3. C. Böhm, B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), 1079-1097 Zbl1185.53073MR2415394
  4. M. Brozos-Vázquez, E. García-Río, R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, J. Math. Phys. 46 (2005) Zbl1076.53084MR2121707
  5. R. L. Bryant, Local existence of gradient Ricci solitons, (1987) 
  6. H.-D. Cao, Q. Chen, On locally conformally flat gradient steady Ricci solitons, (2009) 
  7. X. Cao, B. Wang, Z. Zhang, On locally conformally flat gradient shrinking Ricci solitons, (2008) Zbl1215.53061
  8. B.-L. Chen, Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), 363-382 Zbl1177.53036MR2520796
  9. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part I. Geometric aspects, 135 (2007), American Mathematical Society, Providence, RI Zbl1216.53057MR2302600
  10. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part II. Analytic aspects, 144 (2008), American Mathematical Society, Providence, RI Zbl1216.53057MR2365237
  11. B. Chow, P. Lu, L. Ni, Hamilton’s Ricci flow, 77 (2006), American Mathematical Society, Providence, RI Zbl1118.53001
  12. A. Derdzinski, Some remarks on the local structure of Codazzi tensors, Global differential geometry and global analysis (Berlin, 1979) 838 (1981), 243-299, Springer–Verlag, Berlin Zbl0437.53012
  13. M. Eminenti, G. La Nave, C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), 345-367 Zbl1160.53031MR2448435
  14. M. Fernández–López, E. García–Río, Rigidity of shrinking Ricci solitons, (2009) Zbl1226.53047
  15. S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, (1990), Springer–Verlag Zbl0716.53001MR1083149
  16. R. S. Hamilton, Three–manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306 Zbl0504.53034MR664497
  17. R. S. Hamilton, Four–manifolds with positive curvature operator, J. Diff. Geom. 24 (1986), 153-179 Zbl0628.53042MR862046
  18. R. S. Hamilton, Eternal solutions to the Ricci flow, J. Diff. Geom. 38 (1993), 1-11 Zbl0792.53041MR1231700
  19. R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), 545-572 Zbl0840.53029MR1333936
  20. R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) (1995), 7-136, Int. Press, Cambridge, MA Zbl0867.53030MR1375255
  21. S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), 209-215 Zbl0387.53014MR535555
  22. S. Hiepko, H. Reckziegel, Über sphärische Blätterungen und die Vollständigkeit ihrer Blätter, Manuscripta Math. 31 (1980), 269-283 Zbl0441.53035MR576500
  23. B. Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific J. Math. 236 (2008), 73-88 Zbl1152.53056MR2398988
  24. L. Ma, L. Cheng, On the conditions to control curvature tensors or Ricci flow, Ann. Global Anal. Geom. 37 (2010), 403-411 Zbl1188.35033MR2601499
  25. O. Munteanu, N. Sesum, On gradient Ricci solitons, (2009) Zbl1275.53061
  26. A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math 645 (2010), 125-153 Zbl1196.53041MR2673425
  27. L. Ni, N. Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008), 941-955 Zbl1158.53052MR2443993
  28. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, (2002) Zbl1130.53001
  29. P. Petersen, W. Wylie, On the classification of gradient Ricci solitons, (2007) Zbl1202.53049
  30. P. Petersen, W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), 329-345 Zbl1176.53048MR2507581
  31. N. Sesum, Convergence of the Ricci flow toward a soliton, Comm. Anal. Geom. 14 (2006), 283-343 Zbl1106.53045MR2255013
  32. R. Tojeiro, Conformal de Rham decomposition of Riemannian manifolds, Houston J. Math. 32 (2006), 725-743 (electronic) Zbl1116.53044MR2247906
  33. Z.-H. Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009), 189-200 Zbl1171.53332MR2525510
  34. Z.-H. Zhang, On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009), 2755-2759 Zbl1176.53046MR2497489

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.