Nilpotency of self homotopy equivalences with coefficients

Maxence Cuvilliez[1]; Aniceto Murillo[2]; Antonio Viruel[3]

  • [1] Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga (Spain)
  • [2] Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga, SPAIN
  • [3] Universidad de Málaga, Departamento de Álgebra, Geometría y Topología, Ap. 59, 29080 Málaga, SPAIN.

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 351-364
  • ISSN: 0373-0956

Abstract

top
In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.

How to cite

top

Cuvilliez, Maxence, Murillo, Aniceto, and Viruel, Antonio. "Nilpotency of self homotopy equivalences with coefficients." Annales de l’institut Fourier 61.1 (2011): 351-364. <http://eudml.org/doc/219750>.

@article{Cuvilliez2011,
abstract = {In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.},
affiliation = {Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga (Spain); Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga, SPAIN; Universidad de Málaga, Departamento de Álgebra, Geometría y Topología, Ap. 59, 29080 Málaga, SPAIN.},
author = {Cuvilliez, Maxence, Murillo, Aniceto, Viruel, Antonio},
journal = {Annales de l’institut Fourier},
keywords = {Self homotopy equivalence; self-homotopy equivalence; nilpotency; space with local coefficients},
language = {eng},
number = {1},
pages = {351-364},
publisher = {Association des Annales de l’institut Fourier},
title = {Nilpotency of self homotopy equivalences with coefficients},
url = {http://eudml.org/doc/219750},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Cuvilliez, Maxence
AU - Murillo, Aniceto
AU - Viruel, Antonio
TI - Nilpotency of self homotopy equivalences with coefficients
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 351
EP - 364
AB - In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.
LA - eng
KW - Self homotopy equivalence; self-homotopy equivalence; nilpotency; space with local coefficients
UR - http://eudml.org/doc/219750
ER -

References

top
  1. Martin Arkowitz, Problems on Self-homotopy equivalences, Contemp. Math. 274 (2001), 309-315 Zbl0973.55005MR1817020
  2. Martin Arkowitz, Gregory Lupton, Aniceto Murillo, Subgroups of the group of self-homotopy equivalences, Contemp. Math. 274 (2001), 21-32 Zbl0982.55002MR1817000
  3. H.J. Baues, Obstruction Theory, 628 (1977), Springer Zbl0361.55017MR467748
  4. E. Dror, W. Dwyer, D. Kan, Self-homotopy equivalences of virtually nilpotent spaces, Comm. Math. Helv. 56 (1981), 599-614 Zbl0504.55004MR656214
  5. E. Dror, A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187-197 Zbl0417.55008MR546789
  6. A. Garvín, P. Murillo, A. Viruel, Nilpotency and localization of groups of fiber homotopy equivalences, Contemporary Math. 274 (2001), 145-157 Zbl0978.55006MR1817007
  7. S. Gitler, Operations with local coefficients, Amer. Journal of Math. 82 (1963), 156-188 Zbl0131.38006MR158398
  8. D. Gorenstein, Finite groups, (1968), Harper and Row Zbl0185.05701MR231903
  9. P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, 15 (1975), North-Holland Zbl0323.55016MR478146
  10. W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, 13 (1966), Interscience Publishers Zbl0138.25604
  11. K. Maruyama, Localization of a certain group of self-homotopy equivalences, Pacific Journal of Math. 136 (1989), 293-301 Zbl0673.55006MR978616
  12. K. Maruyama, M. Mimura, Nilpotent groups of the group of self-homotopy equivalences, Israel Journal of Math. 72 (1990), 313-319 Zbl0735.55003MR1120224
  13. J. Møller, Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific Jour. of Math. 130 (1987), 171-186 Zbl0599.55010MR910659
  14. J. Møller, Self-homotopy equivalences of H * ( - ; / p ) -local spaces, Koday Math. Jour. 12 (1989), 270-281 Zbl0685.55005MR1002667
  15. J. Rutter, Homotopy self–equivalences 1988–1999, Contemporary Math. 274 (2001), 1-12 Zbl0973.55001MR1816998
  16. H. Scheerer, D. Tanré, Variation zum Konzept der Lusternik-Schnirelmann Kategorie, Math. Nachr. 207 (1999), 183-194 Zbl0933.55003MR1724294
  17. J. Siegel, k -invariants in local coefficients theory, Proc. Amer. Math. Soc. 29 (1971), 169-174 Zbl0214.49903MR307224
  18. D. Sullivan, Infinitesimal computations in topology, I.H.E.S. Publ. Math. 47 (1977), 269-331 Zbl0374.57002MR646078
  19. G. Whitehead, Elements of Homotopy Theory, 61 (1978), Springer Zbl0406.55001MR516508
  20. C. Wilkerson, Applications of minimal simplicial groups, Topology 15 (1976), 115-130 Zbl0345.55011MR402737

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.