Nilpotency of self homotopy equivalences with coefficients
Maxence Cuvilliez[1]; Aniceto Murillo[2]; Antonio Viruel[3]
- [1] Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga (Spain)
- [2] Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga, SPAIN
- [3] Universidad de Málaga, Departamento de Álgebra, Geometría y Topología, Ap. 59, 29080 Málaga, SPAIN.
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 1, page 351-364
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCuvilliez, Maxence, Murillo, Aniceto, and Viruel, Antonio. "Nilpotency of self homotopy equivalences with coefficients." Annales de l’institut Fourier 61.1 (2011): 351-364. <http://eudml.org/doc/219750>.
@article{Cuvilliez2011,
abstract = {In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.},
affiliation = {Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga (Spain); Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga, SPAIN; Universidad de Málaga, Departamento de Álgebra, Geometría y Topología, Ap. 59, 29080 Málaga, SPAIN.},
author = {Cuvilliez, Maxence, Murillo, Aniceto, Viruel, Antonio},
journal = {Annales de l’institut Fourier},
keywords = {Self homotopy equivalence; self-homotopy equivalence; nilpotency; space with local coefficients},
language = {eng},
number = {1},
pages = {351-364},
publisher = {Association des Annales de l’institut Fourier},
title = {Nilpotency of self homotopy equivalences with coefficients},
url = {http://eudml.org/doc/219750},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Cuvilliez, Maxence
AU - Murillo, Aniceto
AU - Viruel, Antonio
TI - Nilpotency of self homotopy equivalences with coefficients
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 351
EP - 364
AB - In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.
LA - eng
KW - Self homotopy equivalence; self-homotopy equivalence; nilpotency; space with local coefficients
UR - http://eudml.org/doc/219750
ER -
References
top- Martin Arkowitz, Problems on Self-homotopy equivalences, Contemp. Math. 274 (2001), 309-315 Zbl0973.55005MR1817020
- Martin Arkowitz, Gregory Lupton, Aniceto Murillo, Subgroups of the group of self-homotopy equivalences, Contemp. Math. 274 (2001), 21-32 Zbl0982.55002MR1817000
- H.J. Baues, Obstruction Theory, 628 (1977), Springer Zbl0361.55017MR467748
- E. Dror, W. Dwyer, D. Kan, Self-homotopy equivalences of virtually nilpotent spaces, Comm. Math. Helv. 56 (1981), 599-614 Zbl0504.55004MR656214
- E. Dror, A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187-197 Zbl0417.55008MR546789
- A. Garvín, P. Murillo, A. Viruel, Nilpotency and localization of groups of fiber homotopy equivalences, Contemporary Math. 274 (2001), 145-157 Zbl0978.55006MR1817007
- S. Gitler, Operations with local coefficients, Amer. Journal of Math. 82 (1963), 156-188 Zbl0131.38006MR158398
- D. Gorenstein, Finite groups, (1968), Harper and Row Zbl0185.05701MR231903
- P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, 15 (1975), North-Holland Zbl0323.55016MR478146
- W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, 13 (1966), Interscience Publishers Zbl0138.25604
- K. Maruyama, Localization of a certain group of self-homotopy equivalences, Pacific Journal of Math. 136 (1989), 293-301 Zbl0673.55006MR978616
- K. Maruyama, M. Mimura, Nilpotent groups of the group of self-homotopy equivalences, Israel Journal of Math. 72 (1990), 313-319 Zbl0735.55003MR1120224
- J. Møller, Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific Jour. of Math. 130 (1987), 171-186 Zbl0599.55010MR910659
- J. Møller, Self-homotopy equivalences of -local spaces, Koday Math. Jour. 12 (1989), 270-281 Zbl0685.55005MR1002667
- J. Rutter, Homotopy self–equivalences 1988–1999, Contemporary Math. 274 (2001), 1-12 Zbl0973.55001MR1816998
- H. Scheerer, D. Tanré, Variation zum Konzept der Lusternik-Schnirelmann Kategorie, Math. Nachr. 207 (1999), 183-194 Zbl0933.55003MR1724294
- J. Siegel, -invariants in local coefficients theory, Proc. Amer. Math. Soc. 29 (1971), 169-174 Zbl0214.49903MR307224
- D. Sullivan, Infinitesimal computations in topology, I.H.E.S. Publ. Math. 47 (1977), 269-331 Zbl0374.57002MR646078
- G. Whitehead, Elements of Homotopy Theory, 61 (1978), Springer Zbl0406.55001MR516508
- C. Wilkerson, Applications of minimal simplicial groups, Topology 15 (1976), 115-130 Zbl0345.55011MR402737
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.