A new proof of a conjecture of Yoccoz

Xavier Buff[1]; Arnaud Chéritat[2]

  • [1] Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 (France)
  • [2] C.N.R.S Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 319-350
  • ISSN: 0373-0956

Abstract

top
We give a new proof of the following conjecture of Yoccoz: ( C ) ( θ ) log rad Δ ( Q θ ) - Y ( θ ) + C , where Q θ ( z ) = e 2 π i θ z + z 2 , Δ ( Q θ ) is its Siegel disk if Q θ is linearizable (or otherwise), rad Δ ( Q θ ) is the conformal radius of the Siegel disk of Q θ (or 0 if there is none) and Y ( θ ) is Yoccoz’s Brjuno function.In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.We then extend this result to some new families of polynomials such as z d + c with d > 2 . We also show that the conjecture does not hold for e 2 π i θ ( z + z d ) with d > 2 .

How to cite

top

Buff, Xavier, and Chéritat, Arnaud. "A new proof of a conjecture of Yoccoz." Annales de l’institut Fourier 61.1 (2011): 319-350. <http://eudml.org/doc/219751>.

@article{Buff2011,
abstract = {We give a new proof of the following conjecture of Yoccoz:\[ (\exists C\in \mathbb\{R\})~(\forall \theta \in \mathbb\{R\}\setminus \mathbb\{Q\}) \quad \log \mathrm\{rad\}\,\Delta (Q\_\theta ) \le -Y(\theta ) +C, \]where $Q_\{\theta \}(z)=\mathrm\{e\}^\{2\pi i\theta \}z+z^2$, $\Delta (Q_\theta )$ is its Siegel disk if $Q_\theta $ is linearizable (or $\emptyset$ otherwise), $\mathrm\{rad\}\,\Delta (Q_\theta )$ is the conformal radius of the Siegel disk of $Q_\theta $ (or $0$ if there is none) and $Y(\theta )$ is Yoccoz’s Brjuno function.In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.We then extend this result to some new families of polynomials such as $z^d+c$ with $d&gt;2$. We also show that the conjecture does not hold for $\mathrm\{e\}^\{2\pi i\theta \} (z + z^d)$ with $d&gt;2$.},
affiliation = {Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 (France); C.N.R.S Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9},
author = {Buff, Xavier, Chéritat, Arnaud},
journal = {Annales de l’institut Fourier},
keywords = {Siegel disks; quadratic polynomials; harmonic and subharbonic functions; conformal radius; holomorphic motions},
language = {eng},
number = {1},
pages = {319-350},
publisher = {Association des Annales de l’institut Fourier},
title = {A new proof of a conjecture of Yoccoz},
url = {http://eudml.org/doc/219751},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Buff, Xavier
AU - Chéritat, Arnaud
TI - A new proof of a conjecture of Yoccoz
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 319
EP - 350
AB - We give a new proof of the following conjecture of Yoccoz:\[ (\exists C\in \mathbb{R})~(\forall \theta \in \mathbb{R}\setminus \mathbb{Q}) \quad \log \mathrm{rad}\,\Delta (Q_\theta ) \le -Y(\theta ) +C, \]where $Q_{\theta }(z)=\mathrm{e}^{2\pi i\theta }z+z^2$, $\Delta (Q_\theta )$ is its Siegel disk if $Q_\theta $ is linearizable (or $\emptyset$ otherwise), $\mathrm{rad}\,\Delta (Q_\theta )$ is the conformal radius of the Siegel disk of $Q_\theta $ (or $0$ if there is none) and $Y(\theta )$ is Yoccoz’s Brjuno function.In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.We then extend this result to some new families of polynomials such as $z^d+c$ with $d&gt;2$. We also show that the conjecture does not hold for $\mathrm{e}^{2\pi i\theta } (z + z^d)$ with $d&gt;2$.
LA - eng
KW - Siegel disks; quadratic polynomials; harmonic and subharbonic functions; conformal radius; holomorphic motions
UR - http://eudml.org/doc/219751
ER -

References

top
  1. Lipman Bers, H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986), 259-286 Zbl0619.30027MR857675
  2. Xavier Buff, Virtually repelling fixed points, Publ. Mat. 47 (2003), 195-209 Zbl1043.37014MR1970900
  3. Xavier Buff, Arnaud Chéritat, Upper bound for the size of quadratic Siegel disks, Invent. Math. 156 (2004), 1-24 Zbl1087.37041MR2047656
  4. Xavier Buff, Arnaud Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks, Ann. of Math. (2) 164 (2006), 265-312 Zbl1109.37040MR2233849
  5. Xavier Buff, Adam L. Epstein, A parabolic Pommerenke-Levin-Yoccoz inequality, Fund. Math. 172 (2002), 249-289 Zbl1115.37323MR1898687
  6. Arnaud Chéritat, Recherche d’ensembles de Julia de mesure de Lebesgue positive, (2001) 
  7. Adrien Douady, John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343 Zbl0587.30028MR816367
  8. A. L. Epstein, Infinitesimal Thurston rigidity and the Fatou-Shishikura inequality, (1991) 
  9. Lukas Geyer, Linearization of structurally stable polynomials, Progress in holomorphic dynamics 387 (1998), 27-30, Longman, Harlow Zbl0955.30022MR1643012
  10. G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, (2008), Oxford University Press, Oxford Zbl1159.11001MR2445243
  11. R. Mañé, P. Sad, D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), 193-217 Zbl0524.58025MR732343
  12. Christian Pommerenke, Univalent functions, (1975), Vandenhoeck & Ruprecht, Göttingen Zbl0298.30014MR507768
  13. Thomas Ransford, Potential theory in the complex plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001MR1334766
  14. Emmanuel Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mém. Soc. Math. Fr. (N.S.) (1999) Zbl0929.37017MR1779976
  15. Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), 1-29 Zbl0621.58030MR892140
  16. Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), 347-355 Zbl0741.32009MR1037218
  17. Dennis P. Sullivan, William P. Thurston, Extending holomorphic motions, Acta Math. 157 (1986), 243-257 Zbl0619.30026MR857674
  18. Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque (1995), 3-88 MR1367353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.