A new proof of a conjecture of Yoccoz
Xavier Buff[1]; Arnaud Chéritat[2]
- [1] Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 (France)
- [2] C.N.R.S Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 1, page 319-350
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBuff, Xavier, and Chéritat, Arnaud. "A new proof of a conjecture of Yoccoz." Annales de l’institut Fourier 61.1 (2011): 319-350. <http://eudml.org/doc/219751>.
@article{Buff2011,
abstract = {We give a new proof of the following conjecture of Yoccoz:\[ (\exists C\in \mathbb\{R\})~(\forall \theta \in \mathbb\{R\}\setminus \mathbb\{Q\}) \quad \log \mathrm\{rad\}\,\Delta (Q\_\theta ) \le -Y(\theta ) +C, \]where $Q_\{\theta \}(z)=\mathrm\{e\}^\{2\pi i\theta \}z+z^2$, $\Delta (Q_\theta )$ is its Siegel disk if $Q_\theta $ is linearizable (or $\emptyset$ otherwise), $\mathrm\{rad\}\,\Delta (Q_\theta )$ is the conformal radius of the Siegel disk of $Q_\theta $ (or $0$ if there is none) and $Y(\theta )$ is Yoccoz’s Brjuno function.In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.We then extend this result to some new families of polynomials such as $z^d+c$ with $d>2$. We also show that the conjecture does not hold for $\mathrm\{e\}^\{2\pi i\theta \} (z + z^d)$ with $d>2$.},
affiliation = {Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 (France); C.N.R.S Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9},
author = {Buff, Xavier, Chéritat, Arnaud},
journal = {Annales de l’institut Fourier},
keywords = {Siegel disks; quadratic polynomials; harmonic and subharbonic functions; conformal radius; holomorphic motions},
language = {eng},
number = {1},
pages = {319-350},
publisher = {Association des Annales de l’institut Fourier},
title = {A new proof of a conjecture of Yoccoz},
url = {http://eudml.org/doc/219751},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Buff, Xavier
AU - Chéritat, Arnaud
TI - A new proof of a conjecture of Yoccoz
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 319
EP - 350
AB - We give a new proof of the following conjecture of Yoccoz:\[ (\exists C\in \mathbb{R})~(\forall \theta \in \mathbb{R}\setminus \mathbb{Q}) \quad \log \mathrm{rad}\,\Delta (Q_\theta ) \le -Y(\theta ) +C, \]where $Q_{\theta }(z)=\mathrm{e}^{2\pi i\theta }z+z^2$, $\Delta (Q_\theta )$ is its Siegel disk if $Q_\theta $ is linearizable (or $\emptyset$ otherwise), $\mathrm{rad}\,\Delta (Q_\theta )$ is the conformal radius of the Siegel disk of $Q_\theta $ (or $0$ if there is none) and $Y(\theta )$ is Yoccoz’s Brjuno function.In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.We then extend this result to some new families of polynomials such as $z^d+c$ with $d>2$. We also show that the conjecture does not hold for $\mathrm{e}^{2\pi i\theta } (z + z^d)$ with $d>2$.
LA - eng
KW - Siegel disks; quadratic polynomials; harmonic and subharbonic functions; conformal radius; holomorphic motions
UR - http://eudml.org/doc/219751
ER -
References
top- Lipman Bers, H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986), 259-286 Zbl0619.30027MR857675
- Xavier Buff, Virtually repelling fixed points, Publ. Mat. 47 (2003), 195-209 Zbl1043.37014MR1970900
- Xavier Buff, Arnaud Chéritat, Upper bound for the size of quadratic Siegel disks, Invent. Math. 156 (2004), 1-24 Zbl1087.37041MR2047656
- Xavier Buff, Arnaud Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks, Ann. of Math. (2) 164 (2006), 265-312 Zbl1109.37040MR2233849
- Xavier Buff, Adam L. Epstein, A parabolic Pommerenke-Levin-Yoccoz inequality, Fund. Math. 172 (2002), 249-289 Zbl1115.37323MR1898687
- Arnaud Chéritat, Recherche d’ensembles de Julia de mesure de Lebesgue positive, (2001)
- Adrien Douady, John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343 Zbl0587.30028MR816367
- A. L. Epstein, Infinitesimal Thurston rigidity and the Fatou-Shishikura inequality, (1991)
- Lukas Geyer, Linearization of structurally stable polynomials, Progress in holomorphic dynamics 387 (1998), 27-30, Longman, Harlow Zbl0955.30022MR1643012
- G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, (2008), Oxford University Press, Oxford Zbl1159.11001MR2445243
- R. Mañé, P. Sad, D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), 193-217 Zbl0524.58025MR732343
- Christian Pommerenke, Univalent functions, (1975), Vandenhoeck & Ruprecht, Göttingen Zbl0298.30014MR507768
- Thomas Ransford, Potential theory in the complex plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001MR1334766
- Emmanuel Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mém. Soc. Math. Fr. (N.S.) (1999) Zbl0929.37017MR1779976
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), 1-29 Zbl0621.58030MR892140
- Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), 347-355 Zbl0741.32009MR1037218
- Dennis P. Sullivan, William P. Thurston, Extending holomorphic motions, Acta Math. 157 (1986), 243-257 Zbl0619.30026MR857674
- Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque (1995), 3-88 MR1367353
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.