An explicit formula for the Hilbert symbol of a formal group

Floric Tavares Ribeiro[1]

  • [1] Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 261-318
  • ISSN: 0373-0956

Abstract

top
A Brückner-Vostokov formula for the Hilbert symbol of a formal group was established by Abrashkin under the assumption that roots of unity belong to the base field. The main motivation of this work is to remove this hypothesis. It is obtained by combining methods of ( ϕ , Γ )-modules and a cohomological interpretation of Abrashkin’s technique. To do this, we build ( ϕ , Γ )-modules adapted to the false Tate curve extension and generalize some related tools like the Herr complex with explicit formulas for the cup-product and the Kummer map.

How to cite

top

Tavares Ribeiro, Floric. "An explicit formula for the Hilbert symbol of a formal group." Annales de l’institut Fourier 61.1 (2011): 261-318. <http://eudml.org/doc/219753>.

@article{TavaresRibeiro2011,
abstract = {A Brückner-Vostokov formula for the Hilbert symbol of a formal group was established by Abrashkin under the assumption that roots of unity belong to the base field. The main motivation of this work is to remove this hypothesis. It is obtained by combining methods of ($\varphi , \Gamma $)-modules and a cohomological interpretation of Abrashkin’s technique. To do this, we build ($\varphi , \Gamma $)-modules adapted to the false Tate curve extension and generalize some related tools like the Herr complex with explicit formulas for the cup-product and the Kummer map.},
affiliation = {Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France)},
author = {Tavares Ribeiro, Floric},
journal = {Annales de l’institut Fourier},
keywords = {$p$-adic representations; ($\phi ,\Gamma $)-modules; formal groups; explicit reciprocity law; -adic representations; -modules},
language = {eng},
number = {1},
pages = {261-318},
publisher = {Association des Annales de l’institut Fourier},
title = {An explicit formula for the Hilbert symbol of a formal group},
url = {http://eudml.org/doc/219753},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Tavares Ribeiro, Floric
TI - An explicit formula for the Hilbert symbol of a formal group
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 261
EP - 318
AB - A Brückner-Vostokov formula for the Hilbert symbol of a formal group was established by Abrashkin under the assumption that roots of unity belong to the base field. The main motivation of this work is to remove this hypothesis. It is obtained by combining methods of ($\varphi , \Gamma $)-modules and a cohomological interpretation of Abrashkin’s technique. To do this, we build ($\varphi , \Gamma $)-modules adapted to the false Tate curve extension and generalize some related tools like the Herr complex with explicit formulas for the cup-product and the Kummer map.
LA - eng
KW - $p$-adic representations; ($\phi ,\Gamma $)-modules; formal groups; explicit reciprocity law; -adic representations; -modules
UR - http://eudml.org/doc/219753
ER -

References

top
  1. V. A. Abrashkin, A ramification filtration of the Galois group of a local field. II, Trudy Mat. Inst. Steklov. 208 (1995), 18-69 Zbl0884.11047MR1730256
  2. V. A. Abrashkin, Explicit formulas for the Hilbert symbol of a formal group over Witt vectors, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), 3-56 Zbl0889.11041MR1478558
  3. D. Benois, Périodes p -adiques et lois de réciprocité explicites, J. Reine Angew. Math. 493 (1997), 115-151 Zbl1011.11078MR1491810
  4. D. Benois, On Iwasawa theory of crystalline representations, Duke Math. J. 104 (2000), 211-267 Zbl0996.11072MR1773559
  5. L. Berger, Représentations p -adiques et équations différentielles, Invent. Math. 148 (2002), 219-284 Zbl1113.14016MR1906150
  6. L. Berger, Bloch and Kato’s exponential map: three explicit formulas, Doc. Math. (2003), 99-129 (electronic) Zbl1064.11077MR2046596
  7. L. Berger, Limites de représentations cristallines, Compos. Math. 140 (2004), 1473-1498 Zbl1071.11067MR2098398
  8. C. Breuil, Une application de corps des normes, Compos. Math. 117 (1999), 189-203 Zbl0933.11055MR1695849
  9. F. Cherbonnier, P. Colmez, Théorie d’Iwasawa des représentations p -adiques d’un corps local, J. Amer. Math. Soc. 12 (1999), 241-268 Zbl0933.11056MR1626273
  10. R. F. Coleman, The dilogarithm and the norm residue symbol, Bull. Soc. Math. France 109 (1981), 373-402 Zbl0493.12019MR660143
  11. P. Colmez, Périodes p -adiques des variétés abéliennes, Math. Ann. 292 (1992), 629-644 Zbl0793.14033MR1157318
  12. J.-M. Fontaine, Groupes p -divisibles sur les corps locaux, (1977), Société Mathématique de France, Paris Zbl0377.14009MR498610
  13. J.-M. Fontaine, Représentations p -adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II (1990), 249-309, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA Zbl0575.14038MR1106901
  14. J.-M. Fontaine, Le corps des périodes p -adiques, Astérisque (1994), 59-111 Zbl0940.14012MR1293971
  15. J.-M. Fontaine, G. Laffaille, Construction de représentations p -adiques, Ann. Sci. École Norm. Sup. (4) 15 (1982), 547-608 Zbl0579.14037MR707328
  16. L. Herr, Sur la cohomologie galoisienne des corps p -adiques, Bull. Soc. Math. France 126 (1998), 563-600 Zbl0967.11050MR1693457
  17. L. Herr, Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001), 307-337 Zbl1160.11364MR1839766
  18. T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246 Zbl0202.03101MR255551
  19. M. Kisin, Crystalline representations and F -crystals, Algebraic geometry and number theory 253 (2006), 459-496, Progr. Math., Birkhäuser Boston, Boston, MA Zbl1184.11052MR2263197
  20. S. Sen, On explicit reciprocity laws, J. Reine Angew. Math. 313 (1980), 1-26 Zbl0411.12005MR552459
  21. J.-P. Serre, Corps locaux, (1968), Hermann, Paris Zbl0137.02501MR354618
  22. J.-P. Serre, Cohomologie galoisienne, (1994), Springer-Verlag, Berlin Zbl0812.12002MR1324577
  23. F. Tavares Ribeiro, ( ϕ , Γ )-modules et loi explicite de réciprocité, (2008) 
  24. O. Venjakob, A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math. 559 (2003), 153-191 Zbl1051.11056MR1989649
  25. S. V. Vostokov, Explicit formulas for the Hilbert symbol, Invitation to higher local fields (Münster, 1999) 3 (2000), 81-89 (electronic), Geom. Topol. Publ., Coventry Zbl1008.11053MR1804922
  26. S. V. Vostokov, O. V. Demchenko, An explicit formula for the Hilbert pairing of formal Honda groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 272 (2000), 86-128, 346 Zbl1101.14323MR1811794
  27. N. Wach, Représentations p -adiques potentiellement cristallines, Bull. Soc. Math. France 124 (1996), 375-400 Zbl0887.11048MR1415732
  28. J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), 59-89 Zbl0516.12015MR719763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.