The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations
Waldo Arriagada-Silva[1]; Christiane Rousseau[2]
- [1] Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, AB T2N 1N4, Canada; and Instituto de matemáticas, Universidad Austral de Chile, Casilla 567 - Valdivia, Chile.
- [2] Département de Mathématiques et de Statistique, Université de Montréal C.P. 6128, Succ. Centre-ville Montréal, Québec H3C 3J7, Canada.
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 3, page 541-580
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topArriagada-Silva, Waldo, and Rousseau, Christiane. "The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 541-580. <http://eudml.org/doc/219760>.
@article{Arriagada2011,
abstract = {In this paper we study equivalence classes of generic $1$-parameter germs of real analytic families $\{\mathcal\{Q\}\}_\{\varepsilon \}$ unfolding codimension $1$ germs of diffeomorphisms $\{\mathcal\{Q\}\}_0: (\{\mathbb\{R\}\},0)\rightarrow (\{\mathbb\{R\}\},0)$ with a fixed point at the origin and multiplier $-1,$ under (weak) analytic conjugacy. These germs are generic unfoldings of the flip bifurcation. Two such germs are analytically conjugate if and only if their second iterates, $\{\mathcal\{P\}\}_\{\varepsilon \}=\{\mathcal\{Q\}\}_\{\varepsilon \}^\{\circ 2\},$ are analytically conjugate. We give a complete modulus of analytic classification: this modulus is an unfolding of the Ecalle modulus of the resonant germ $\{\mathcal\{Q\}\}_0$ with special symmetry properties reflecting the real character of the germ $\{\mathcal\{Q\}\}_\{\varepsilon \} .$ As an application, this provides a complete modulus of analytic classification under weak orbital equivalence for a germ of family of planar vector fields unfolding a weak focus of order $1$$(i.e.$ undergoing a generic Hopf bifurcation of codimension $1)$ through the modulus of analytic classification of the germ of family $\{\mathcal\{P\}\}_\{\varepsilon \}=\{\mathcal\{Q\}\}_\{\varepsilon \}^\{\circ 2\},$ where $\{\mathcal\{P\}\}_\{\varepsilon \}$ is the Poincaré monodromy of the family of vector fields.},
affiliation = {Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, AB T2N 1N4, Canada; and Instituto de matemáticas, Universidad Austral de Chile, Casilla 567 - Valdivia, Chile.; Département de Mathématiques et de Statistique, Université de Montréal C.P. 6128, Succ. Centre-ville Montréal, Québec H3C 3J7, Canada.},
author = {Arriagada-Silva, Waldo, Rousseau, Christiane},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {singularity theory of differentiable mappings; unfolding of the codimension-one flip; Hopf bifurcation; analytic classification},
language = {eng},
month = {7},
number = {3},
pages = {541-580},
publisher = {Université Paul Sabatier, Toulouse},
title = {The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations},
url = {http://eudml.org/doc/219760},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Arriagada-Silva, Waldo
AU - Rousseau, Christiane
TI - The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 541
EP - 580
AB - In this paper we study equivalence classes of generic $1$-parameter germs of real analytic families ${\mathcal{Q}}_{\varepsilon }$ unfolding codimension $1$ germs of diffeomorphisms ${\mathcal{Q}}_0: ({\mathbb{R}},0)\rightarrow ({\mathbb{R}},0)$ with a fixed point at the origin and multiplier $-1,$ under (weak) analytic conjugacy. These germs are generic unfoldings of the flip bifurcation. Two such germs are analytically conjugate if and only if their second iterates, ${\mathcal{P}}_{\varepsilon }={\mathcal{Q}}_{\varepsilon }^{\circ 2},$ are analytically conjugate. We give a complete modulus of analytic classification: this modulus is an unfolding of the Ecalle modulus of the resonant germ ${\mathcal{Q}}_0$ with special symmetry properties reflecting the real character of the germ ${\mathcal{Q}}_{\varepsilon } .$ As an application, this provides a complete modulus of analytic classification under weak orbital equivalence for a germ of family of planar vector fields unfolding a weak focus of order $1$$(i.e.$ undergoing a generic Hopf bifurcation of codimension $1)$ through the modulus of analytic classification of the germ of family ${\mathcal{P}}_{\varepsilon }={\mathcal{Q}}_{\varepsilon }^{\circ 2},$ where ${\mathcal{P}}_{\varepsilon }$ is the Poincaré monodromy of the family of vector fields.
LA - eng
KW - singularity theory of differentiable mappings; unfolding of the codimension-one flip; Hopf bifurcation; analytic classification
UR - http://eudml.org/doc/219760
ER -
References
top- Arriagada-Silva (W.).— Characterization of the generic unfolding of a weak focus. Preprint J. Diff. Eqs., JDEQ10-246R1, (2010).
- Arriagada-Silva (W.).— Characterization of the unfolding of a weak focus and modulus of analytic classification. PhD thesis, Université de Montréal, (2010).
- Christopher (C.) and Rousseau (C.).— The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point. Preprint, (2008). Zbl1134.37021
- Ecalle (J.).— Les fonctions résurgentes. Publications mathématiques d’Orsay, (1985). Zbl0602.30029
- Fatou (P.).— Sur les équations fonctionnelles. Bull. Soc. Math. France, Paris, 47, 48: p. 161-271, p. 33-94, p. 208-314, (1919-1920). Zbl47.0921.02
- Freitag (E.).— Complex Analysis 2. Universitext, Springer-Verlag Berlin Heidelberg, (2011). Zbl1234.30001MR2810329
- Giné (J.) and Grau (M.).— Characterization of isochronous foci for planar analytic differential systems. Proc. Roy. Soc. Edinburgh Sect. A, 135: p. 985-998, (2005). Zbl1092.34014MR2187221
- Glutsyuk (A.A.).— Congruence of singular points and nonlinear stokes phenomenon. Trans. Moscow Math. Soc., 62: p. 49-95, (2001). Zbl1004.34081MR1907251
- Mattei (J.F.) and Moussu (R.).— Holonomie et intégrales premières. Ann. Scient. Éc. Norm. Sup., 4e série, 13: p. 469-523, (1980). Zbl0458.32005MR608290
- Mardešić (P.), Roussarie (R.), and Rousseau (C.).— Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Moscow Mathematical Journal, 4: p. 455-498, (2004). Zbl1077.37035MR2108445
- Martinet (J.).— Remarques sur la bifurcation noeud-col dans le domaine complexe. Astérisque, 150-151: p. 131-149, (1987). Zbl0655.58025MR923597
- Martinet (J.) and Ramis (J.P.).— Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publ. IHES, 55: p. 63-164, (1982). Zbl0546.58038MR672182
- Martinet (J.) and Ramis (J.P.).— Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann. Scient. Éc. Norm. Sup., 4e série, 16: p. 571-621, (1983). Zbl0534.34011MR740592
- Pérez-Marco (R.) and Yoccoz (J.-C.).— Germes de feuilletages holomorphes à holonomie prescrite. S.M.F., Astérisque, 222: p. 345-371, (1994). Zbl0809.32008
- Rousseau (C.).— The moduli space of germs of generic families of analytic diffeomorphisms unfolding of a codimension one resonant diffeomorphism or resonant saddle. J. Differential Equations, 248: p. 1794-1825, (2010). Zbl1204.37048MR2593608
- Rousseau (C.) and Christopher (C.).— Modulus of analytical classification for the generic unfolding of a codimension one resonant diffeomorphism or resonant saddle. Annales de l’Institut Fourier, 57: p. 301-360, (2007). Zbl1127.37039MR2316241
- Rousseau (C.) and Teyssier (L.).— Analytical moduli for unfoldings of saddle node vector fields. Moscow Mathematical Journal, 8: p. 547-614, (2008). Zbl1165.37016MR2483224
- Shishikura (M.).— Bifurcation of parabolic fixed points. “The Mandelbrot set, theme and variations", London Math. Society Lecture Notes, 274: p. 325-363, (2000). Zbl1062.37043MR1765097
- Voronin (S. M.).— Analytic classification of germs of conformal maps with identical linear part. Funktsional. Anal. i Prilozhen and Func. Anal. Appl., 15: p. 1-17 (Russian), p. 1-13 (English), (1981). Zbl0463.30010MR609790
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.