The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations

Waldo Arriagada-Silva[1]; Christiane Rousseau[2]

  • [1] Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, AB T2N 1N4, Canada; and Instituto de matemáticas, Universidad Austral de Chile, Casilla 567 - Valdivia, Chile.
  • [2] Département de Mathématiques et de Statistique, Université de Montréal C.P. 6128, Succ. Centre-ville Montréal, Québec H3C 3J7, Canada.

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 3, page 541-580
  • ISSN: 0240-2963

Abstract

top
In this paper we study equivalence classes of generic 1 -parameter germs of real analytic families 𝒬 ε unfolding codimension 1 germs of diffeomorphisms 𝒬 0 : ( , 0 ) ( , 0 ) with a fixed point at the origin and multiplier - 1 , under (weak) analytic conjugacy. These germs are generic unfoldings of the flip bifurcation. Two such germs are analytically conjugate if and only if their second iterates, 𝒫 ε = 𝒬 ε 2 , are analytically conjugate. We give a complete modulus of analytic classification: this modulus is an unfolding of the Ecalle modulus of the resonant germ 𝒬 0 with special symmetry properties reflecting the real character of the germ 𝒬 ε . As an application, this provides a complete modulus of analytic classification under weak orbital equivalence for a germ of family of planar vector fields unfolding a weak focus of order 1 ( i . e . undergoing a generic Hopf bifurcation of codimension 1 ) through the modulus of analytic classification of the germ of family 𝒫 ε = 𝒬 ε 2 , where 𝒫 ε is the Poincaré monodromy of the family of vector fields.

How to cite

top

Arriagada-Silva, Waldo, and Rousseau, Christiane. "The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 541-580. <http://eudml.org/doc/219760>.

@article{Arriagada2011,
abstract = {In this paper we study equivalence classes of generic $1$-parameter germs of real analytic families $\{\mathcal\{Q\}\}_\{\varepsilon \}$ unfolding codimension $1$ germs of diffeomorphisms $\{\mathcal\{Q\}\}_0: (\{\mathbb\{R\}\},0)\rightarrow (\{\mathbb\{R\}\},0)$ with a fixed point at the origin and multiplier $-1,$ under (weak) analytic conjugacy. These germs are generic unfoldings of the flip bifurcation. Two such germs are analytically conjugate if and only if their second iterates, $\{\mathcal\{P\}\}_\{\varepsilon \}=\{\mathcal\{Q\}\}_\{\varepsilon \}^\{\circ 2\},$ are analytically conjugate. We give a complete modulus of analytic classification: this modulus is an unfolding of the Ecalle modulus of the resonant germ $\{\mathcal\{Q\}\}_0$ with special symmetry properties reflecting the real character of the germ $\{\mathcal\{Q\}\}_\{\varepsilon \} .$ As an application, this provides a complete modulus of analytic classification under weak orbital equivalence for a germ of family of planar vector fields unfolding a weak focus of order $1$$(i.e.$ undergoing a generic Hopf bifurcation of codimension $1)$ through the modulus of analytic classification of the germ of family $\{\mathcal\{P\}\}_\{\varepsilon \}=\{\mathcal\{Q\}\}_\{\varepsilon \}^\{\circ 2\},$ where $\{\mathcal\{P\}\}_\{\varepsilon \}$ is the Poincaré monodromy of the family of vector fields.},
affiliation = {Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, AB T2N 1N4, Canada; and Instituto de matemáticas, Universidad Austral de Chile, Casilla 567 - Valdivia, Chile.; Département de Mathématiques et de Statistique, Université de Montréal C.P. 6128, Succ. Centre-ville Montréal, Québec H3C 3J7, Canada.},
author = {Arriagada-Silva, Waldo, Rousseau, Christiane},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {singularity theory of differentiable mappings; unfolding of the codimension-one flip; Hopf bifurcation; analytic classification},
language = {eng},
month = {7},
number = {3},
pages = {541-580},
publisher = {Université Paul Sabatier, Toulouse},
title = {The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations},
url = {http://eudml.org/doc/219760},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Arriagada-Silva, Waldo
AU - Rousseau, Christiane
TI - The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 541
EP - 580
AB - In this paper we study equivalence classes of generic $1$-parameter germs of real analytic families ${\mathcal{Q}}_{\varepsilon }$ unfolding codimension $1$ germs of diffeomorphisms ${\mathcal{Q}}_0: ({\mathbb{R}},0)\rightarrow ({\mathbb{R}},0)$ with a fixed point at the origin and multiplier $-1,$ under (weak) analytic conjugacy. These germs are generic unfoldings of the flip bifurcation. Two such germs are analytically conjugate if and only if their second iterates, ${\mathcal{P}}_{\varepsilon }={\mathcal{Q}}_{\varepsilon }^{\circ 2},$ are analytically conjugate. We give a complete modulus of analytic classification: this modulus is an unfolding of the Ecalle modulus of the resonant germ ${\mathcal{Q}}_0$ with special symmetry properties reflecting the real character of the germ ${\mathcal{Q}}_{\varepsilon } .$ As an application, this provides a complete modulus of analytic classification under weak orbital equivalence for a germ of family of planar vector fields unfolding a weak focus of order $1$$(i.e.$ undergoing a generic Hopf bifurcation of codimension $1)$ through the modulus of analytic classification of the germ of family ${\mathcal{P}}_{\varepsilon }={\mathcal{Q}}_{\varepsilon }^{\circ 2},$ where ${\mathcal{P}}_{\varepsilon }$ is the Poincaré monodromy of the family of vector fields.
LA - eng
KW - singularity theory of differentiable mappings; unfolding of the codimension-one flip; Hopf bifurcation; analytic classification
UR - http://eudml.org/doc/219760
ER -

References

top
  1. Arriagada-Silva (W.).— Characterization of the generic unfolding of a weak focus. Preprint J. Diff. Eqs., JDEQ10-246R1, (2010). 
  2. Arriagada-Silva (W.).— Characterization of the unfolding of a weak focus and modulus of analytic classification. PhD thesis, Université de Montréal, (2010). 
  3. Christopher (C.) and Rousseau (C.).— The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point. Preprint, (2008). Zbl1134.37021
  4. Ecalle (J.).— Les fonctions résurgentes. Publications mathématiques d’Orsay, (1985). Zbl0602.30029
  5. Fatou (P.).— Sur les équations fonctionnelles. Bull. Soc. Math. France, Paris, 47, 48: p. 161-271, p. 33-94, p. 208-314, (1919-1920). Zbl47.0921.02
  6. Freitag (E.).— Complex Analysis 2. Universitext, Springer-Verlag Berlin Heidelberg, (2011). Zbl1234.30001MR2810329
  7. Giné (J.) and Grau (M.).— Characterization of isochronous foci for planar analytic differential systems. Proc. Roy. Soc. Edinburgh Sect. A, 135: p. 985-998, (2005). Zbl1092.34014MR2187221
  8. Glutsyuk (A.A.).— Congruence of singular points and nonlinear stokes phenomenon. Trans. Moscow Math. Soc., 62: p. 49-95, (2001). Zbl1004.34081MR1907251
  9. Mattei (J.F.) and Moussu (R.).— Holonomie et intégrales premières. Ann. Scient. Éc. Norm. Sup., 4e série, 13: p. 469-523, (1980). Zbl0458.32005MR608290
  10. Mardešić (P.), Roussarie (R.), and Rousseau (C.).— Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Moscow Mathematical Journal, 4: p. 455-498, (2004). Zbl1077.37035MR2108445
  11. Martinet (J.).— Remarques sur la bifurcation noeud-col dans le domaine complexe. Astérisque, 150-151: p. 131-149, (1987). Zbl0655.58025MR923597
  12. Martinet (J.) and Ramis (J.P.).— Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publ. IHES, 55: p. 63-164, (1982). Zbl0546.58038MR672182
  13. Martinet (J.) and Ramis (J.P.).— Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann. Scient. Éc. Norm. Sup., 4e série, 16: p. 571-621, (1983). Zbl0534.34011MR740592
  14. Pérez-Marco (R.) and Yoccoz (J.-C.).— Germes de feuilletages holomorphes à holonomie prescrite. S.M.F., Astérisque, 222: p. 345-371, (1994). Zbl0809.32008
  15. Rousseau (C.).— The moduli space of germs of generic families of analytic diffeomorphisms unfolding of a codimension one resonant diffeomorphism or resonant saddle. J. Differential Equations, 248: p. 1794-1825, (2010). Zbl1204.37048MR2593608
  16. Rousseau (C.) and Christopher (C.).— Modulus of analytical classification for the generic unfolding of a codimension one resonant diffeomorphism or resonant saddle. Annales de l’Institut Fourier, 57: p. 301-360, (2007). Zbl1127.37039MR2316241
  17. Rousseau (C.) and Teyssier (L.).— Analytical moduli for unfoldings of saddle node vector fields. Moscow Mathematical Journal, 8: p. 547-614, (2008). Zbl1165.37016MR2483224
  18. Shishikura (M.).— Bifurcation of parabolic fixed points. “The Mandelbrot set, theme and variations", London Math. Society Lecture Notes, 274: p. 325-363, (2000). Zbl1062.37043MR1765097
  19. Voronin (S. M.).— Analytic classification of germs of conformal maps ( , 0 ) ( , 0 ) with identical linear part. Funktsional. Anal. i Prilozhen and Func. Anal. Appl., 15: p. 1-17 (Russian), p. 1-13 (English), (1981). Zbl0463.30010MR609790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.