Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle

Christiane Rousseau[1]; Colin Christopher[2]

  • [1] Université de Montréal, CP 6128, Succ. Centre-ville H3C 3J7 Montréal Qc (Canada)
  • [2] University of Plymouth School of Mathematics and Statistics Devon PL4 8AA (United Kingdom)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 1, page 301-360
  • ISSN: 0373-0956

Abstract

top
We consider germs of one-parameter generic families of resonant analytic diffeomorphims and we give a complete modulus of analytic classification by means of the unfolding of the Écalle modulus. We describe the parametric resurgence phenomenon. We apply this to give a complete modulus of orbital analytic classification for the unfolding of a generic resonant saddle of a 2-dimensional vector field by means of the unfolding of its holonomy map. Here again the modulus is an unfolding of the Martinet-Ramis modulus of the resonant saddle. When the saddle passes through the resonance we observe a “transcritical bifurcation”: the dynamics in the neighborhood of the saddle is governed by different parts of the unfolding of the modulus on each side of the bifurcation. We then include the time dependence and give a complete modulus of analytic conjugacy for the unfolding of a generic resonant saddle.

How to cite

top

Rousseau, Christiane, and Christopher, Colin. "Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle." Annales de l’institut Fourier 57.1 (2007): 301-360. <http://eudml.org/doc/10223>.

@article{Rousseau2007,
abstract = {We consider germs of one-parameter generic families of resonant analytic diffeomorphims and we give a complete modulus of analytic classification by means of the unfolding of the Écalle modulus. We describe the parametric resurgence phenomenon. We apply this to give a complete modulus of orbital analytic classification for the unfolding of a generic resonant saddle of a 2-dimensional vector field by means of the unfolding of its holonomy map. Here again the modulus is an unfolding of the Martinet-Ramis modulus of the resonant saddle. When the saddle passes through the resonance we observe a “transcritical bifurcation”: the dynamics in the neighborhood of the saddle is governed by different parts of the unfolding of the modulus on each side of the bifurcation. We then include the time dependence and give a complete modulus of analytic conjugacy for the unfolding of a generic resonant saddle.},
affiliation = {Université de Montréal, CP 6128, Succ. Centre-ville H3C 3J7 Montréal Qc (Canada); University of Plymouth School of Mathematics and Statistics Devon PL4 8AA (United Kingdom)},
author = {Rousseau, Christiane, Christopher, Colin},
journal = {Annales de l’institut Fourier},
keywords = {Unfolding of a resonant diffeomorphism; modulus of analytic classification; unfolding of a resonant saddle; unfolding of Écalle modulus; unfolding of Martinet-Ramis modulus; unfolding of holonomy map; parametric resurgence phenomenon; transcritical bifurcation; resonant diffeomorphisms; modulus of analytic classifications},
language = {eng},
number = {1},
pages = {301-360},
publisher = {Association des Annales de l’institut Fourier},
title = {Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle},
url = {http://eudml.org/doc/10223},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Rousseau, Christiane
AU - Christopher, Colin
TI - Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 301
EP - 360
AB - We consider germs of one-parameter generic families of resonant analytic diffeomorphims and we give a complete modulus of analytic classification by means of the unfolding of the Écalle modulus. We describe the parametric resurgence phenomenon. We apply this to give a complete modulus of orbital analytic classification for the unfolding of a generic resonant saddle of a 2-dimensional vector field by means of the unfolding of its holonomy map. Here again the modulus is an unfolding of the Martinet-Ramis modulus of the resonant saddle. When the saddle passes through the resonance we observe a “transcritical bifurcation”: the dynamics in the neighborhood of the saddle is governed by different parts of the unfolding of the modulus on each side of the bifurcation. We then include the time dependence and give a complete modulus of analytic conjugacy for the unfolding of a generic resonant saddle.
LA - eng
KW - Unfolding of a resonant diffeomorphism; modulus of analytic classification; unfolding of a resonant saddle; unfolding of Écalle modulus; unfolding of Martinet-Ramis modulus; unfolding of holonomy map; parametric resurgence phenomenon; transcritical bifurcation; resonant diffeomorphisms; modulus of analytic classifications
UR - http://eudml.org/doc/10223
ER -

References

top
  1. V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Mir Moscow Zbl0455.34001MR626685
  2. A. D. Brjuno, Analytic form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131-288 Zbl0263.34003MR377192
  3. C. Christopher, P. Mardešić, C. Rousseau, Normalizable, integrable and linearizable points in complex quadratic systems in 2 , J. Dynam. Control Systems 9 (2003), 311-363 Zbl1022.37035MR1990240
  4. C. Christopher, P. Mardešić, C. Rousseau, Normalizability, synchronicity and relative exactness for vector fields in  2 , J. Dynam. Control Systems 10 (2004), 501-525 Zbl1068.37030MR2095939
  5. C. Christopher, C. Rousseau, Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system, Qual. Theory Dynam. Syst. 5 (2004), 11-61 Zbl1100.34022MR2197423
  6. A. Douady, Does a Julia set depend continuously on the polynomial?, Complex dynamical systems. The mathematics behind the Mandelbrot and Julia sets, Robert L. Devaney Ed., Amer. Math. Soc. Short Course Lecture Notes, Proceedings of Symposia in Applied Mathematics 49 (1994), 91-138, American Mathematical Society Zbl0934.30023MR1315535
  7. J. Écalle, Les fonctions résurgentes, (1985), Publications mathématiques d’Orsay Zbl0602.30029
  8. A. A. Glutsyuk, Confluence of singular points and nonlinear Stokes phenomenon, Trans. Moscow Math. Soc. 62 (2001), 49-95 Zbl1004.34081MR1907251
  9. L. Hörmander, An introduction to complex analysis in several variables, (1973), North-Holland, American Elsevier Zbl0271.32001MR1045639
  10. Y. Ilyashenko, Divergence of series reducing an analytic differential equation to linear normal form at a singular point, Funct. Anal. Appl. 13 (1979), 227-229 Zbl0477.34004MR545377
  11. Y. Ilyashenko, Nonlinear Stokes phenomena, Nonlinear Stokes phenomena, Y. Ilyashenko Ed., Advances in Soviet Mathematics 14 (1993), 1-55, Amer. Math. Soc., Providence, RI Zbl0804.32011MR1206041
  12. Y. S. Ilyashenko, A. S. Pyartli, Materialization of Poincaré resonances and divergence of normalizing series, J. Sov. Math. 31 (1985), 3053-3092 Zbl0575.34037
  13. P. Lavaurs, Systèmes dynamiques holomorphes : explosion de points périodiques paraboliques, (1989) 
  14. P. Mardešić, R. Roussarie, C. Rousseau, Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, Moscow Math. J. 4 (2004), 455-502 Zbl1077.37035MR2108445
  15. J. Martinet, Remarques sur la bifurcation nœud-col dans le domaine complexe, Astérisque 150-151 (1987), 131-149 Zbl0655.58025
  16. J. Martinet, J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonantes du premier ordre, Ann. Sci. École Norm. Sup. 16 (1983), 571-621 Zbl0534.34011MR740592
  17. J.-F. Mattei, R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. série 13 (1980), 469-523 Zbl0458.32005MR608290
  18. R. Oudkerk, The parabolic implosion for f 0 ( z ) = z + z ν + 1 + O ( z ν + 2 ) , (1999) 
  19. R. Pérez-Marco, Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe (d’après J.-C. Yoccoz), Astérisque 206 (1992), 273-310 Zbl0791.30019MR1206071
  20. R. Pérez-Marco, J.-C. Yoccoz, Germes de feuilletages holomorphes à holonomie prescrite, Astérisque 222 (1994), 345-371 Zbl0809.32008MR1285395
  21. C. Rousseau, Normal forms, bifurcations and finiteness properties of vector fields, Normal forms, bifurcations and finiteness properties of vector fields, NATO Sci. Ser. II Math. Phys. Chem. 137 (2004), 431-470, Kluwer Acad. Publ., Dordrecht MR2085817
  22. C. Rousseau, Modulus of orbital analytic classification for a family unfolding a saddle-node, Moscow Math. J. 5 (2005), 245-268 Zbl1089.37018MR2153475
  23. M. Shishikura, Bifurcations of parabolic fixed points, The Mandelbrot set, theme and variations, Tan Lei Ed., London Math. Soc. Lecture Note Ser. 274 (2000), 325-363, Cambridge Univ. Press, Cambridge Zbl1062.37043MR1765097
  24. L. Teyssier, Analytical classification of singular saddle-node vector fields, J. Dynam. Control Systems 10 (2004), 577-605 Zbl1068.37033MR2095942
  25. L. Teyssier, Équation homologique et cycles asymptotiques d’une singularité nœud-col, Bull. Sci. Math. 128 (2004), 167-187 Zbl1126.37311
  26. S. M. Voronin, A. A. Grintchy, An analytic classification of saddle resonant singular points of holomorphic vector fields in the complex plane, J. Dynam. Control Syst. 2 (1996), 21-53 Zbl0988.37066MR1377427
  27. J.-C. Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque 231 (1995), 3-88 MR1367353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.