On the rational approximation to the Thue–Morse–Mahler numbers
Yann Bugeaud[1]
- [1] Université de Strasbourg Département de Mathématiques 7, rue René Descartes 67084 STRASBOURG (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 2065-2076
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBugeaud, Yann. "On the rational approximation to the Thue–Morse–Mahler numbers." Annales de l’institut Fourier 61.5 (2011): 2065-2076. <http://eudml.org/doc/219765>.
@article{Bugeaud2011,
abstract = {Let $(t_k)_\{k \ge 0\}$ be the Thue–Morse sequence on $\lbrace 0, 1\rbrace $ defined by $t_0 = 0$, $t_\{2k\} = t_k$ and $t_\{2k+1\} = 1 - t_k$ for $k \ge 0$. Let $b \ge 2$ be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number $\sum _\{k \ge 0\} t_k b^\{-k\}$ is equal to $2$.},
affiliation = {Université de Strasbourg Département de Mathématiques 7, rue René Descartes 67084 STRASBOURG (France)},
author = {Bugeaud, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Irrationality measure; Thue–Morse sequence; Padé approximant; irrationality measure; Thue-Morse sequence},
language = {eng},
number = {5},
pages = {2065-2076},
publisher = {Association des Annales de l’institut Fourier},
title = {On the rational approximation to the Thue–Morse–Mahler numbers},
url = {http://eudml.org/doc/219765},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Bugeaud, Yann
TI - On the rational approximation to the Thue–Morse–Mahler numbers
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2065
EP - 2076
AB - Let $(t_k)_{k \ge 0}$ be the Thue–Morse sequence on $\lbrace 0, 1\rbrace $ defined by $t_0 = 0$, $t_{2k} = t_k$ and $t_{2k+1} = 1 - t_k$ for $k \ge 0$. Let $b \ge 2$ be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number $\sum _{k \ge 0} t_k b^{-k}$ is equal to $2$.
LA - eng
KW - Irrationality measure; Thue–Morse sequence; Padé approximant; irrationality measure; Thue-Morse sequence
UR - http://eudml.org/doc/219765
ER -
References
top- Boris Adamczewski, On the expansion of some exponential periods in an integer base, Math. Ann. 346 (2010), 107-116 Zbl1247.11095MR2558889
- Boris Adamczewski, Julien Cassaigne, Diophantine properties of real numbers generated by finite automata, Compos. Math. 142 (2006), 1351-1372 Zbl1134.11011MR2278750
- Boris Adamczewski, Tanguy Rivoal, Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Philos. Soc. 147 (2009), 659-678 Zbl1205.11080MR2557148
- William W. Adams, J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198 Zbl0366.10027MR441879
- J.-P. Allouche, J. Peyrière, Z.-X. Wen, Z.-Y. Wen, Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble) 48 (1998), 1-27 Zbl0974.11010MR1614914
- J.-P. Allouche, J. O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, (2003), Cambridge University Press Zbl1086.11015MR1997038
- Masaaki Amou, Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory 37 (1991), 231-241 Zbl0718.11030MR1092608
- George A. Baker, Peter Graves-Morris, Padé approximants, 59 (1996), Cambridge University Press, Cambridge Zbl0923.41001MR1383091
- Valérie Berthé, Charles Holton, Luca Q. Zamboni, Initial powers of Sturmian sequences, Acta Arith. 122 (2006), 315-347 Zbl1117.37005MR2234421
- Claude Brezinski, Padé-type approximation and general orthogonal polynomials, 50 (1980), Birkhäuser Verlag, Basel Zbl0418.41012MR561106
- Yann Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677-684 Zbl1163.11056MR2399165
- Yann Bugeaud, D. Krieger, J. Shallit, Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation Zbl1233.68184
- Peter Bundschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer -adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119 Zbl0425.10038MR579386
- Michel Dekking, Transcendance du nombre de Thue-Morse, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A157-A160 Zbl0362.10028MR457363
- Jason Levesley, Cem Salp, Sanju L. Velani, On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann. 338 (2007), 97-118 Zbl1115.11040MR2295506
- Kurt Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366 Zbl55.0115.01MR1512537
- Jeffrey Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217 Zbl0404.10003MR535392
- N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc. 50 (2003), 912-915 Zbl1044.11108MR1992789
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.