On the rational approximation to the Thue–Morse–Mahler numbers

Yann Bugeaud[1]

  • [1] Université de Strasbourg Département de Mathématiques 7, rue René Descartes 67084 STRASBOURG (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 2065-2076
  • ISSN: 0373-0956

Abstract

top
Let ( t k ) k 0 be the Thue–Morse sequence on { 0 , 1 } defined by t 0 = 0 , t 2 k = t k and t 2 k + 1 = 1 - t k for k 0 . Let b 2 be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number k 0 t k b - k is equal to 2 .

How to cite

top

Bugeaud, Yann. "On the rational approximation to the Thue–Morse–Mahler numbers." Annales de l’institut Fourier 61.5 (2011): 2065-2076. <http://eudml.org/doc/219765>.

@article{Bugeaud2011,
abstract = {Let $(t_k)_\{k \ge 0\}$ be the Thue–Morse sequence on $\lbrace 0, 1\rbrace $ defined by $t_0 = 0$, $t_\{2k\} = t_k$ and $t_\{2k+1\} = 1 - t_k$ for $k \ge 0$. Let $b \ge 2$ be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number $\sum _\{k \ge 0\} t_k b^\{-k\}$ is equal to $2$.},
affiliation = {Université de Strasbourg Département de Mathématiques 7, rue René Descartes 67084 STRASBOURG (France)},
author = {Bugeaud, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Irrationality measure; Thue–Morse sequence; Padé approximant; irrationality measure; Thue-Morse sequence},
language = {eng},
number = {5},
pages = {2065-2076},
publisher = {Association des Annales de l’institut Fourier},
title = {On the rational approximation to the Thue–Morse–Mahler numbers},
url = {http://eudml.org/doc/219765},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Bugeaud, Yann
TI - On the rational approximation to the Thue–Morse–Mahler numbers
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2065
EP - 2076
AB - Let $(t_k)_{k \ge 0}$ be the Thue–Morse sequence on $\lbrace 0, 1\rbrace $ defined by $t_0 = 0$, $t_{2k} = t_k$ and $t_{2k+1} = 1 - t_k$ for $k \ge 0$. Let $b \ge 2$ be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number $\sum _{k \ge 0} t_k b^{-k}$ is equal to $2$.
LA - eng
KW - Irrationality measure; Thue–Morse sequence; Padé approximant; irrationality measure; Thue-Morse sequence
UR - http://eudml.org/doc/219765
ER -

References

top
  1. Boris Adamczewski, On the expansion of some exponential periods in an integer base, Math. Ann. 346 (2010), 107-116 Zbl1247.11095MR2558889
  2. Boris Adamczewski, Julien Cassaigne, Diophantine properties of real numbers generated by finite automata, Compos. Math. 142 (2006), 1351-1372 Zbl1134.11011MR2278750
  3. Boris Adamczewski, Tanguy Rivoal, Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Philos. Soc. 147 (2009), 659-678 Zbl1205.11080MR2557148
  4. William W. Adams, J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198 Zbl0366.10027MR441879
  5. J.-P. Allouche, J. Peyrière, Z.-X. Wen, Z.-Y. Wen, Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble) 48 (1998), 1-27 Zbl0974.11010MR1614914
  6. J.-P. Allouche, J. O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, (2003), Cambridge University Press Zbl1086.11015MR1997038
  7. Masaaki Amou, Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory 37 (1991), 231-241 Zbl0718.11030MR1092608
  8. George A. Baker, Peter Graves-Morris, Padé approximants, 59 (1996), Cambridge University Press, Cambridge Zbl0923.41001MR1383091
  9. Valérie Berthé, Charles Holton, Luca Q. Zamboni, Initial powers of Sturmian sequences, Acta Arith. 122 (2006), 315-347 Zbl1117.37005MR2234421
  10. Claude Brezinski, Padé-type approximation and general orthogonal polynomials, 50 (1980), Birkhäuser Verlag, Basel Zbl0418.41012MR561106
  11. Yann Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677-684 Zbl1163.11056MR2399165
  12. Yann Bugeaud, D. Krieger, J. Shallit, Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation Zbl1233.68184
  13. Peter Bundschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer g -adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119 Zbl0425.10038MR579386
  14. Michel Dekking, Transcendance du nombre de Thue-Morse, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A157-A160 Zbl0362.10028MR457363
  15. Jason Levesley, Cem Salp, Sanju L. Velani, On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann. 338 (2007), 97-118 Zbl1115.11040MR2295506
  16. Kurt Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366 Zbl55.0115.01MR1512537
  17. Jeffrey Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217 Zbl0404.10003MR535392
  18. N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc. 50 (2003), 912-915 Zbl1044.11108MR1992789

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.