Hankel determinants of the Thue-Morse sequence

Jean-Paul Allouche; Jacques Peyrière; Zhi-Xiong Wen; Zhi-Ying Wen

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 1, page 1-27
  • ISSN: 0373-0956

Abstract

top
Let ϵ = ( ϵ n ) n 0 be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations: ϵ 0 = 1 , ϵ 2 n = ϵ n , ϵ 2 n + 1 = 1 - ϵ n . We consider { | n p | } n 1 , p 0 , the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series n 0 ( - 1 ) ϵ n x n .

How to cite

top

Allouche, Jean-Paul, et al. "Hankel determinants of the Thue-Morse sequence." Annales de l'institut Fourier 48.1 (1998): 1-27. <http://eudml.org/doc/75275>.

@article{Allouche1998,
abstract = {Let $\epsilon =(\epsilon _n)_\{n\ge 0\}$ be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations:\begin\{\}\epsilon \_0=1,~\epsilon \_\{2n\}=\epsilon \_n,~\epsilon \_\{2n+1\}=1-\epsilon \_n.\end\{\}We consider $\lbrace \vert \{\cal E\}^p_n\vert \rbrace _\{n\ge 1,p\ge 0\}$, the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series $\sum _\{n\ge 0\}(-1)^\{\epsilon _n\}x^n$.},
author = {Allouche, Jean-Paul, Peyrière, Jacques, Wen, Zhi-Xiong, Wen, Zhi-Ying},
journal = {Annales de l'institut Fourier},
keywords = {Thue-Morse sequence; period doubling sequence; automatic sequences; Hankel determinants; Padé approximants},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Association des Annales de l'Institut Fourier},
title = {Hankel determinants of the Thue-Morse sequence},
url = {http://eudml.org/doc/75275},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Allouche, Jean-Paul
AU - Peyrière, Jacques
AU - Wen, Zhi-Xiong
AU - Wen, Zhi-Ying
TI - Hankel determinants of the Thue-Morse sequence
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 1
EP - 27
AB - Let $\epsilon =(\epsilon _n)_{n\ge 0}$ be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations:\begin{}\epsilon _0=1,~\epsilon _{2n}=\epsilon _n,~\epsilon _{2n+1}=1-\epsilon _n.\end{}We consider $\lbrace \vert {\cal E}^p_n\vert \rbrace _{n\ge 1,p\ge 0}$, the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series $\sum _{n\ge 0}(-1)^{\epsilon _n}x^n$.
LA - eng
KW - Thue-Morse sequence; period doubling sequence; automatic sequences; Hankel determinants; Padé approximants
UR - http://eudml.org/doc/75275
ER -

References

top
  1. [1] J.-P. ALLOUCHE, Automates finis en théorie des nombres, Expo. Math., 5 (1987), 239-266. Zbl0641.10041MR88k:11046
  2. [2] G.A. BAKER and Jr.P. GRAVERS-MORRIS, Padé approximants, Encyclopedia of mathematics and its applications, I, II, Cambridge University Press, 1981. Zbl0603.30044
  3. [3] C. BREZINSKI, Padé-type approximation and general orthogonal polynomials, Birkhäuser Verlag, 1980. Zbl0418.41012MR82a:41017
  4. [4] G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE and G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108 (1980), 401-419. Zbl0472.10035MR82e:10092
  5. [5] A. COBHAM, A proof of transcendence based on functional equations, IBM RC-2041, Yorktown Heights, New York, 1968. 
  6. [6] A. COBHAM, Uniform tag sequences, Math. Systems Theory, 6 (1972), 164-192. Zbl0253.02029MR56 #15230
  7. [7] F.M. DEKKING, Combinatorial and statistical properties of sequences generated by substitutions, Thesis, Mathematisch Instituut, Katholieke Universiteit van Nijmegen, 1980. 
  8. [8] F.M. DEKKING, M. MENDÈS FRANCE and A.J. VAN DER POORTEN, Folds!, Math. Intelligencer, 4 (1982), 130-138, 173-181 and 190-195. Zbl0493.10001
  9. [9] W.H. GOTTSCHALK, Substitution minimal sets, Trans. Amer. Math. Soc., 109 (1963), 467-491. Zbl0121.18002MR32 #8325
  10. [10] M. MORSE, Recurrent geodesic on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100. Zbl48.0786.06JFM48.0786.06
  11. [11] M. QUEFFÉLEC, Substitution dynamical systems — Spectral analysis, Lecture Notes in Math., 1294, Springer-Verlag (1987). Zbl0642.28013MR89g:54094
  12. [12] O. SALON, Suites automatiques à multi-indices et algébricité, C.R. Acad. Sci. Paris, Série I, 305 (1987), 501-504. Zbl0628.10007MR88k:11094
  13. [13] O. SALON, Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux, Exposé 4, (1986-1987), 4-01-4-27; followed by an appendix by J. Shallit, 4-29A-4-36A. Zbl0653.10049
  14. [14] A. THUE, Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 7 (1906), 1-22. JFM39.0283.01
  15. [15] A. THUE, Über die gegenseitige Lage gleicher Teile gewisse Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 1 (1912), 1-67. JFM44.0462.01
  16. [16] Z.-X. WEN and Z.-Y. WEN, The sequences of substitutions and related topics, Adv. Math. China, 3 (1989), 123-145. Zbl0694.10006
  17. [17] Z.-X. WEN and Z.-Y. WEN, Mots infinis et produits de matrices à coefficients polynomiaux, RAIRO, Theoretical Informatics and Applications, 26 (1992), 319-343. Zbl0758.11016MR93d:15035
  18. [18] Z.-X. WEN and Z.-Y. WEN, Some studies on the (p,q)-type sequences, Theoret. Comput. Sci., 94 (1992), 373-393. Zbl0758.11017MR93g:11022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.