Hankel determinants of the Thue-Morse sequence
Jean-Paul Allouche; Jacques Peyrière; Zhi-Xiong Wen; Zhi-Ying Wen
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 1, page 1-27
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAllouche, Jean-Paul, et al. "Hankel determinants of the Thue-Morse sequence." Annales de l'institut Fourier 48.1 (1998): 1-27. <http://eudml.org/doc/75275>.
@article{Allouche1998,
abstract = {Let $\epsilon =(\epsilon _n)_\{n\ge 0\}$ be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations:\begin\{\}\epsilon \_0=1,~\epsilon \_\{2n\}=\epsilon \_n,~\epsilon \_\{2n+1\}=1-\epsilon \_n.\end\{\}We consider $\lbrace \vert \{\cal E\}^p_n\vert \rbrace _\{n\ge 1,p\ge 0\}$, the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series $\sum _\{n\ge 0\}(-1)^\{\epsilon _n\}x^n$.},
author = {Allouche, Jean-Paul, Peyrière, Jacques, Wen, Zhi-Xiong, Wen, Zhi-Ying},
journal = {Annales de l'institut Fourier},
keywords = {Thue-Morse sequence; period doubling sequence; automatic sequences; Hankel determinants; Padé approximants},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Association des Annales de l'Institut Fourier},
title = {Hankel determinants of the Thue-Morse sequence},
url = {http://eudml.org/doc/75275},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Allouche, Jean-Paul
AU - Peyrière, Jacques
AU - Wen, Zhi-Xiong
AU - Wen, Zhi-Ying
TI - Hankel determinants of the Thue-Morse sequence
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 1
EP - 27
AB - Let $\epsilon =(\epsilon _n)_{n\ge 0}$ be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations:\begin{}\epsilon _0=1,~\epsilon _{2n}=\epsilon _n,~\epsilon _{2n+1}=1-\epsilon _n.\end{}We consider $\lbrace \vert {\cal E}^p_n\vert \rbrace _{n\ge 1,p\ge 0}$, the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series $\sum _{n\ge 0}(-1)^{\epsilon _n}x^n$.
LA - eng
KW - Thue-Morse sequence; period doubling sequence; automatic sequences; Hankel determinants; Padé approximants
UR - http://eudml.org/doc/75275
ER -
References
top- [1] J.-P. ALLOUCHE, Automates finis en théorie des nombres, Expo. Math., 5 (1987), 239-266. Zbl0641.10041MR88k:11046
- [2] G.A. BAKER and Jr.P. GRAVERS-MORRIS, Padé approximants, Encyclopedia of mathematics and its applications, I, II, Cambridge University Press, 1981. Zbl0603.30044
- [3] C. BREZINSKI, Padé-type approximation and general orthogonal polynomials, Birkhäuser Verlag, 1980. Zbl0418.41012MR82a:41017
- [4] G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE and G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108 (1980), 401-419. Zbl0472.10035MR82e:10092
- [5] A. COBHAM, A proof of transcendence based on functional equations, IBM RC-2041, Yorktown Heights, New York, 1968.
- [6] A. COBHAM, Uniform tag sequences, Math. Systems Theory, 6 (1972), 164-192. Zbl0253.02029MR56 #15230
- [7] F.M. DEKKING, Combinatorial and statistical properties of sequences generated by substitutions, Thesis, Mathematisch Instituut, Katholieke Universiteit van Nijmegen, 1980.
- [8] F.M. DEKKING, M. MENDÈS FRANCE and A.J. VAN DER POORTEN, Folds!, Math. Intelligencer, 4 (1982), 130-138, 173-181 and 190-195. Zbl0493.10001
- [9] W.H. GOTTSCHALK, Substitution minimal sets, Trans. Amer. Math. Soc., 109 (1963), 467-491. Zbl0121.18002MR32 #8325
- [10] M. MORSE, Recurrent geodesic on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100. Zbl48.0786.06JFM48.0786.06
- [11] M. QUEFFÉLEC, Substitution dynamical systems — Spectral analysis, Lecture Notes in Math., 1294, Springer-Verlag (1987). Zbl0642.28013MR89g:54094
- [12] O. SALON, Suites automatiques à multi-indices et algébricité, C.R. Acad. Sci. Paris, Série I, 305 (1987), 501-504. Zbl0628.10007MR88k:11094
- [13] O. SALON, Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux, Exposé 4, (1986-1987), 4-01-4-27; followed by an appendix by J. Shallit, 4-29A-4-36A. Zbl0653.10049
- [14] A. THUE, Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 7 (1906), 1-22. JFM39.0283.01
- [15] A. THUE, Über die gegenseitige Lage gleicher Teile gewisse Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 1 (1912), 1-67. JFM44.0462.01
- [16] Z.-X. WEN and Z.-Y. WEN, The sequences of substitutions and related topics, Adv. Math. China, 3 (1989), 123-145. Zbl0694.10006
- [17] Z.-X. WEN and Z.-Y. WEN, Mots infinis et produits de matrices à coefficients polynomiaux, RAIRO, Theoretical Informatics and Applications, 26 (1992), 319-343. Zbl0758.11016MR93d:15035
- [18] Z.-X. WEN and Z.-Y. WEN, Some studies on the (p,q)-type sequences, Theoret. Comput. Sci., 94 (1992), 373-393. Zbl0758.11017MR93g:11022
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.