Geometric Invariant Theory and Generalized Eigenvalue Problem II

Nicolas Ressayre[1]

  • [1] Université Montpellier II Département de Mathématiques Case courrier 051 - Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1467-1491
  • ISSN: 0373-0956

Abstract

top
Let G be a connected reductive subgroup of a complex connected reductive group G ^ . Fix maximal tori and Borel subgroups of G and G ^ . Consider the cone ( G , G ^ ) generated by the pairs ( ν , ν ^ ) of strictly dominant characters such that V ν * is a submodule of V ν ^ . We obtain a bijective parametrization of the faces of ( G , G ^ ) as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.

How to cite

top

Ressayre, Nicolas. "Geometric Invariant Theory and Generalized Eigenvalue Problem II." Annales de l’institut Fourier 61.4 (2011): 1467-1491. <http://eudml.org/doc/219780>.

@article{Ressayre2011,
abstract = {Let $G$ be a connected reductive subgroup of a complex connected reductive group $\hat\{G\}$. Fix maximal tori and Borel subgroups of $G$ and $\hat\{G\}$. Consider the cone $\mathcal\{L\}\mathcal\{R\}^\circ (G,\hat\{G\})$ generated by the pairs $(\nu ,\hat\{\nu \})$ of strictly dominant characters such that $V_\nu ^*$ is a submodule of $V_\{\hat\{\nu \}\}$. We obtain a bijective parametrization of the faces of $\mathcal\{L\}\mathcal\{R\}^\circ (G,\hat\{G\})$ as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.},
affiliation = {Université Montpellier II Département de Mathématiques Case courrier 051 - Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)},
author = {Ressayre, Nicolas},
journal = {Annales de l’institut Fourier},
keywords = {Branching rule; generalized Horn problem; Littlewood-Richardson cone; GIT-cone; branching rule},
language = {eng},
number = {4},
pages = {1467-1491},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometric Invariant Theory and Generalized Eigenvalue Problem II},
url = {http://eudml.org/doc/219780},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Ressayre, Nicolas
TI - Geometric Invariant Theory and Generalized Eigenvalue Problem II
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1467
EP - 1491
AB - Let $G$ be a connected reductive subgroup of a complex connected reductive group $\hat{G}$. Fix maximal tori and Borel subgroups of $G$ and $\hat{G}$. Consider the cone $\mathcal{L}\mathcal{R}^\circ (G,\hat{G})$ generated by the pairs $(\nu ,\hat{\nu })$ of strictly dominant characters such that $V_\nu ^*$ is a submodule of $V_{\hat{\nu }}$. We obtain a bijective parametrization of the faces of $\mathcal{L}\mathcal{R}^\circ (G,\hat{G})$ as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.
LA - eng
KW - Branching rule; generalized Horn problem; Littlewood-Richardson cone; GIT-cone; branching rule
UR - http://eudml.org/doc/219780
ER -

References

top
  1. Prakash Belkale, Geometric proof of a conjecture of Fulton, Adv. Math. 216 (2007), 346-357 Zbl1129.14063MR2353260
  2. Prakash Belkale, Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), 185-228 Zbl1106.14037MR2242637
  3. Arkady Berenstein, Reyer Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433-466 Zbl0979.53092MR1750957
  4. Michel Brion, On the general faces of the moment polytope, Internat. Math. Res. Notices (1999), 185-201 Zbl0946.14025MR1677271
  5. Igor V. Dolgachev, Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5-56 Zbl1001.14018MR1659282
  6. Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241 Zbl0112.01501MR140521
  7. Allen Knutson, Terence Tao, Christopher Woodward, The honeycomb model of GL n ( ) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48 Zbl1043.05111MR2015329
  8. D. Luna, Slices étales, Sur les groupes algébriques (1973), 81-105. Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris Zbl0286.14014MR318167
  9. D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), 231-238 Zbl0315.14018MR376704
  10. D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487-496 Zbl0444.14010MR544240
  11. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, (1994), Springer Verlag, New York Zbl0797.14004MR1304906
  12. V. L. Popov, È. B. Vinberg, Algebraic Geometry IV, Invariant Theory 55 (1991), 123-284, ParshinA.N.A. 
  13. N. Ressayre, A short geometric proof of a conjecture of Fulton Zbl1234.14035
  14. N. Ressayre, The GIT-equivalence for G -line bundles, Geom. Dedicata 81 (2000), 295-324 Zbl0955.14035MR1772211
  15. N. Ressayre, Geometric Invariant Theory and Generalized Eigenvalue Problem, Invent. Math. 180 (2010), 389-441 Zbl1197.14051MR2609246
  16. Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), 46-91 Zbl0915.58036MR1645052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.