Geometric Invariant Theory and Generalized Eigenvalue Problem II
- [1] Université Montpellier II Département de Mathématiques Case courrier 051 - Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1467-1491
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRessayre, Nicolas. "Geometric Invariant Theory and Generalized Eigenvalue Problem II." Annales de l’institut Fourier 61.4 (2011): 1467-1491. <http://eudml.org/doc/219780>.
@article{Ressayre2011,
abstract = {Let $G$ be a connected reductive subgroup of a complex connected reductive group $\hat\{G\}$. Fix maximal tori and Borel subgroups of $G$ and $\hat\{G\}$. Consider the cone $\mathcal\{L\}\mathcal\{R\}^\circ (G,\hat\{G\})$ generated by the pairs $(\nu ,\hat\{\nu \})$ of strictly dominant characters such that $V_\nu ^*$ is a submodule of $V_\{\hat\{\nu \}\}$. We obtain a bijective parametrization of the faces of $\mathcal\{L\}\mathcal\{R\}^\circ (G,\hat\{G\})$ as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.},
affiliation = {Université Montpellier II Département de Mathématiques Case courrier 051 - Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)},
author = {Ressayre, Nicolas},
journal = {Annales de l’institut Fourier},
keywords = {Branching rule; generalized Horn problem; Littlewood-Richardson cone; GIT-cone; branching rule},
language = {eng},
number = {4},
pages = {1467-1491},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometric Invariant Theory and Generalized Eigenvalue Problem II},
url = {http://eudml.org/doc/219780},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Ressayre, Nicolas
TI - Geometric Invariant Theory and Generalized Eigenvalue Problem II
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1467
EP - 1491
AB - Let $G$ be a connected reductive subgroup of a complex connected reductive group $\hat{G}$. Fix maximal tori and Borel subgroups of $G$ and $\hat{G}$. Consider the cone $\mathcal{L}\mathcal{R}^\circ (G,\hat{G})$ generated by the pairs $(\nu ,\hat{\nu })$ of strictly dominant characters such that $V_\nu ^*$ is a submodule of $V_{\hat{\nu }}$. We obtain a bijective parametrization of the faces of $\mathcal{L}\mathcal{R}^\circ (G,\hat{G})$ as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.
LA - eng
KW - Branching rule; generalized Horn problem; Littlewood-Richardson cone; GIT-cone; branching rule
UR - http://eudml.org/doc/219780
ER -
References
top- Prakash Belkale, Geometric proof of a conjecture of Fulton, Adv. Math. 216 (2007), 346-357 Zbl1129.14063MR2353260
- Prakash Belkale, Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), 185-228 Zbl1106.14037MR2242637
- Arkady Berenstein, Reyer Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433-466 Zbl0979.53092MR1750957
- Michel Brion, On the general faces of the moment polytope, Internat. Math. Res. Notices (1999), 185-201 Zbl0946.14025MR1677271
- Igor V. Dolgachev, Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5-56 Zbl1001.14018MR1659282
- Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241 Zbl0112.01501MR140521
- Allen Knutson, Terence Tao, Christopher Woodward, The honeycomb model of tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48 Zbl1043.05111MR2015329
- D. Luna, Slices étales, Sur les groupes algébriques (1973), 81-105. Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris Zbl0286.14014MR318167
- D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), 231-238 Zbl0315.14018MR376704
- D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487-496 Zbl0444.14010MR544240
- D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, (1994), Springer Verlag, New York Zbl0797.14004MR1304906
- V. L. Popov, È. B. Vinberg, Algebraic Geometry IV, Invariant Theory 55 (1991), 123-284, ParshinA.N.A.
- N. Ressayre, A short geometric proof of a conjecture of Fulton Zbl1234.14035
- N. Ressayre, The GIT-equivalence for -line bundles, Geom. Dedicata 81 (2000), 295-324 Zbl0955.14035MR1772211
- N. Ressayre, Geometric Invariant Theory and Generalized Eigenvalue Problem, Invent. Math. 180 (2010), 389-441 Zbl1197.14051MR2609246
- Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), 46-91 Zbl0915.58036MR1645052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.