Decomposition of reductive regular Prehomogeneous Vector Spaces
- [1] Université de Strasbourg et CNRS Institut de Recherche Mathématique Avancée 7 rue René Descartes 67084 Strasbourg Cedex (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 2183-2218
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRubenthaler, Hubert. "Decomposition of reductive regular Prehomogeneous Vector Spaces." Annales de l’institut Fourier 61.5 (2011): 2183-2218. <http://eudml.org/doc/219784>.
@article{Rubenthaler2011,
abstract = {Let $(G,V)$ be a regular prehomogeneous vector space (abbreviated to $PV$), where $G$ is a reductive algebraic group over $\mathbb\{C\}$. If $V= \oplus _\{i=1\}^\{n\}V_\{i\}$ is a decomposition of $V$ into irreducible representations, then, in general, the PV’s $(G,V_\{i\})$ are no longer regular. In this paper we introduce the notion of quasi-irreducible $PV$ (abbreviated to $Q$-irreducible), and show first that for completely $Q$-reducible $PV$’s, the $Q$-isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate sense, any regular PV is a direct sum of $Q$-irreducible $PV$’s. Finally we classify the $Q$-irreducible PV’s of parabolic type.},
affiliation = {Université de Strasbourg et CNRS Institut de Recherche Mathématique Avancée 7 rue René Descartes 67084 Strasbourg Cedex (France)},
author = {Rubenthaler, Hubert},
journal = {Annales de l’institut Fourier},
keywords = {reductive groups; prehomogeneous vector spaces; relative invariants; prehomogeneous vector spaces of parabolic type},
language = {eng},
number = {5},
pages = {2183-2218},
publisher = {Association des Annales de l’institut Fourier},
title = {Decomposition of reductive regular Prehomogeneous Vector Spaces},
url = {http://eudml.org/doc/219784},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Rubenthaler, Hubert
TI - Decomposition of reductive regular Prehomogeneous Vector Spaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2183
EP - 2218
AB - Let $(G,V)$ be a regular prehomogeneous vector space (abbreviated to $PV$), where $G$ is a reductive algebraic group over $\mathbb{C}$. If $V= \oplus _{i=1}^{n}V_{i}$ is a decomposition of $V$ into irreducible representations, then, in general, the PV’s $(G,V_{i})$ are no longer regular. In this paper we introduce the notion of quasi-irreducible $PV$ (abbreviated to $Q$-irreducible), and show first that for completely $Q$-reducible $PV$’s, the $Q$-isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate sense, any regular PV is a direct sum of $Q$-irreducible $PV$’s. Finally we classify the $Q$-irreducible PV’s of parabolic type.
LA - eng
KW - reductive groups; prehomogeneous vector spaces; relative invariants; prehomogeneous vector spaces of parabolic type
UR - http://eudml.org/doc/219784
ER -
References
top- Nicole Bopp, Hubert Rubenthaler, Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Amer. Math. Soc. 174 (2005) Zbl1076.11059MR2115051
- E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 6 (1957), 111-224 Zbl0077.03404
- Tatsuo Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra 83 (1983), 72-100 Zbl0533.14024MR710588
- Tatsuo Kimura, Introduction to prehomogeneous vector spaces, 215 (2003), American Mathematical Society, Providence, RI Zbl1035.11060MR1944442
- Tatsuo Kimura, S. Kasai, H. Hosokawa, Universal transitivity of simple and -simple prehomogeneous vector spaces, Ann. Inst. Fourier (Grenoble) 38 (1988), 11-41 Zbl0606.14037MR949009
- Tatsuo Kimura, Shin-ichi Kasai, Masaaki Inuzuka, Osami Yasukura, A classification of -simple prehomogeneous vector spaces of type , J. Algebra 114 (1988), 369-400 Zbl0658.20026MR936979
- Tatsuo Kimura, Shin-ichi Kasai, Masanobu Taguchi, Masaaki Inuzuka, Some P.V.-equivalences and a classification of -simple prehomogeneous vector spaces of type , Trans. Amer. Math. Soc. 308 (1988), 433-494 Zbl0666.14021MR951617
- A. Mortajine, Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs, 40 (1991), Hermann, Paris Zbl0717.22007MR1096494
- Hubert Rubenthaler, Espaces vectoriels préhomogènes, sous-groupes paraboliques et -triplets, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A127-A129 Zbl0428.22011MR563957
- Hubert Rubenthaler, Espaces préhomogènes de type parabolique, Lectures on harmonic analysis on Lie groups and related topics (Strasbourg, 1979) 14 (1982), 189-221, Kinokuniya Book Store, Tokyo Zbl0561.17005MR683471
- Hubert Rubenthaler, Espaces préhomogènes de type parabolique, Université de Strasbourg (1982) Zbl0546.22019MR683471
- Hubert Rubenthaler, Algèbres de Lie et espaces préhomogènes, 44 (1992), Hermann Éditeurs des Sciences et des Arts, Paris Zbl0840.17007MR2412335
- Hiroshi Saito, Convergence of the zeta functions of prehomogeneous vector spaces, Nagoya Math. J. 170 (2003), 1-31 Zbl1045.11083MR1994885
- Fumihiro Sato, Zeta functions in several variables associated with prehomogeneous vector spaces. III. Eisenstein series for indefinite quadratic forms, Ann. of Math. (2) 116 (1982), 77-99 Zbl0497.10012MR662121
- Fumihiro Sato, Zeta functions with polynomial coefficients associated with prehomogeneous vector spaces, Comment. Math. Univ. St. Paul. 45 (1996), 177-211 Zbl0874.11063MR1416190
- Mikio Sato, Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note, Nagoya Math. J. 120 (1990), 1-34 Zbl0715.22014MR1086566
- Mikio Sato, Tatsuo Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155 Zbl0321.14030MR430336
- Mikio Sato, Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131-170 Zbl0309.10014MR344230
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.