Decomposition of reductive regular Prehomogeneous Vector Spaces

Hubert Rubenthaler[1]

  • [1] Université de Strasbourg et CNRS Institut de Recherche Mathématique Avancée 7 rue René Descartes 67084 Strasbourg Cedex (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 2183-2218
  • ISSN: 0373-0956

Abstract

top
Let ( G , V ) be a regular prehomogeneous vector space (abbreviated to P V ), where G is a reductive algebraic group over . If V = i = 1 n V i is a decomposition of V into irreducible representations, then, in general, the PV’s ( G , V i ) are no longer regular. In this paper we introduce the notion of quasi-irreducible P V (abbreviated to Q -irreducible), and show first that for completely Q -reducible P V ’s, the Q -isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate sense, any regular PV is a direct sum of Q -irreducible P V ’s. Finally we classify the Q -irreducible PV’s of parabolic type.

How to cite

top

Rubenthaler, Hubert. "Decomposition of reductive regular Prehomogeneous Vector Spaces." Annales de l’institut Fourier 61.5 (2011): 2183-2218. <http://eudml.org/doc/219784>.

@article{Rubenthaler2011,
abstract = {Let $(G,V)$ be a regular prehomogeneous vector space (abbreviated to $PV$), where $G$ is a reductive algebraic group over $\mathbb\{C\}$. If $V= \oplus _\{i=1\}^\{n\}V_\{i\}$ is a decomposition of $V$ into irreducible representations, then, in general, the PV’s $(G,V_\{i\})$ are no longer regular. In this paper we introduce the notion of quasi-irreducible $PV$ (abbreviated to $Q$-irreducible), and show first that for completely $Q$-reducible $PV$’s, the $Q$-isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate sense, any regular PV is a direct sum of $Q$-irreducible $PV$’s. Finally we classify the $Q$-irreducible PV’s of parabolic type.},
affiliation = {Université de Strasbourg et CNRS Institut de Recherche Mathématique Avancée 7 rue René Descartes 67084 Strasbourg Cedex (France)},
author = {Rubenthaler, Hubert},
journal = {Annales de l’institut Fourier},
keywords = {reductive groups; prehomogeneous vector spaces; relative invariants; prehomogeneous vector spaces of parabolic type},
language = {eng},
number = {5},
pages = {2183-2218},
publisher = {Association des Annales de l’institut Fourier},
title = {Decomposition of reductive regular Prehomogeneous Vector Spaces},
url = {http://eudml.org/doc/219784},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Rubenthaler, Hubert
TI - Decomposition of reductive regular Prehomogeneous Vector Spaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2183
EP - 2218
AB - Let $(G,V)$ be a regular prehomogeneous vector space (abbreviated to $PV$), where $G$ is a reductive algebraic group over $\mathbb{C}$. If $V= \oplus _{i=1}^{n}V_{i}$ is a decomposition of $V$ into irreducible representations, then, in general, the PV’s $(G,V_{i})$ are no longer regular. In this paper we introduce the notion of quasi-irreducible $PV$ (abbreviated to $Q$-irreducible), and show first that for completely $Q$-reducible $PV$’s, the $Q$-isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate sense, any regular PV is a direct sum of $Q$-irreducible $PV$’s. Finally we classify the $Q$-irreducible PV’s of parabolic type.
LA - eng
KW - reductive groups; prehomogeneous vector spaces; relative invariants; prehomogeneous vector spaces of parabolic type
UR - http://eudml.org/doc/219784
ER -

References

top
  1. Nicole Bopp, Hubert Rubenthaler, Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Amer. Math. Soc. 174 (2005) Zbl1076.11059MR2115051
  2. E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 6 (1957), 111-224 Zbl0077.03404
  3. Tatsuo Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra 83 (1983), 72-100 Zbl0533.14024MR710588
  4. Tatsuo Kimura, Introduction to prehomogeneous vector spaces, 215 (2003), American Mathematical Society, Providence, RI Zbl1035.11060MR1944442
  5. Tatsuo Kimura, S. Kasai, H. Hosokawa, Universal transitivity of simple and 2 -simple prehomogeneous vector spaces, Ann. Inst. Fourier (Grenoble) 38 (1988), 11-41 Zbl0606.14037MR949009
  6. Tatsuo Kimura, Shin-ichi Kasai, Masaaki Inuzuka, Osami Yasukura, A classification of 2 -simple prehomogeneous vector spaces of type I , J. Algebra 114 (1988), 369-400 Zbl0658.20026MR936979
  7. Tatsuo Kimura, Shin-ichi Kasai, Masanobu Taguchi, Masaaki Inuzuka, Some P.V.-equivalences and a classification of 2 -simple prehomogeneous vector spaces of type II , Trans. Amer. Math. Soc. 308 (1988), 433-494 Zbl0666.14021MR951617
  8. A. Mortajine, Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs, 40 (1991), Hermann, Paris Zbl0717.22007MR1096494
  9. Hubert Rubenthaler, Espaces vectoriels préhomogènes, sous-groupes paraboliques et 𝔰 𝔩 2 -triplets, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A127-A129 Zbl0428.22011MR563957
  10. Hubert Rubenthaler, Espaces préhomogènes de type parabolique, Lectures on harmonic analysis on Lie groups and related topics (Strasbourg, 1979) 14 (1982), 189-221, Kinokuniya Book Store, Tokyo Zbl0561.17005MR683471
  11. Hubert Rubenthaler, Espaces préhomogènes de type parabolique, Université de Strasbourg (1982) Zbl0546.22019MR683471
  12. Hubert Rubenthaler, Algèbres de Lie et espaces préhomogènes, 44 (1992), Hermann Éditeurs des Sciences et des Arts, Paris Zbl0840.17007MR2412335
  13. Hiroshi Saito, Convergence of the zeta functions of prehomogeneous vector spaces, Nagoya Math. J. 170 (2003), 1-31 Zbl1045.11083MR1994885
  14. Fumihiro Sato, Zeta functions in several variables associated with prehomogeneous vector spaces. III. Eisenstein series for indefinite quadratic forms, Ann. of Math. (2) 116 (1982), 77-99 Zbl0497.10012MR662121
  15. Fumihiro Sato, Zeta functions with polynomial coefficients associated with prehomogeneous vector spaces, Comment. Math. Univ. St. Paul. 45 (1996), 177-211 Zbl0874.11063MR1416190
  16. Mikio Sato, Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note, Nagoya Math. J. 120 (1990), 1-34 Zbl0715.22014MR1086566
  17. Mikio Sato, Tatsuo Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155 Zbl0321.14030MR430336
  18. Mikio Sato, Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131-170 Zbl0309.10014MR344230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.