Universal transitivity of simple and 2-simple prehomogeneous vector spaces
T. Kimura; S. Kasai; H. Hosokawa
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 2, page 11-41
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKimura, T., Kasai, S., and Hosokawa, H.. "Universal transitivity of simple and 2-simple prehomogeneous vector spaces." Annales de l'institut Fourier 38.2 (1988): 11-41. <http://eudml.org/doc/74797>.
@article{Kimura1988,
abstract = {We denote by $k$ a field of characteristic zero satisfying $H^ 1(k,\{\rm Aut\}(SL_ 2))\ne 0$. Let $G$ be a connected $k$-split linear algebraic group acting on $X=\{\rm Aff\}^ n$ rationally by $\rho $ with a Zariski-dense $G$-orbit $Y$. A prehomogeneous vector space $(G,\rho $,X) is called “universally transitive” if the set of $k$-rational points $Y(k)$ is a single $\rho $$(G)(k)$-orbit for all such $k$. Such prehomogeneous vector spaces are classified by J. Igusa when $\rho $ is irreducible. We classify them when $G$ is reductive and its commutator subgroup $[G,G]$ is either a simple algebraic group or a product of two simple algebraic groups.},
author = {Kimura, T., Kasai, S., Hosokawa, H.},
journal = {Annales de l'institut Fourier},
keywords = {prehomogeneous vector spaces; Galois cohomology},
language = {eng},
number = {2},
pages = {11-41},
publisher = {Association des Annales de l'Institut Fourier},
title = {Universal transitivity of simple and 2-simple prehomogeneous vector spaces},
url = {http://eudml.org/doc/74797},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Kimura, T.
AU - Kasai, S.
AU - Hosokawa, H.
TI - Universal transitivity of simple and 2-simple prehomogeneous vector spaces
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 11
EP - 41
AB - We denote by $k$ a field of characteristic zero satisfying $H^ 1(k,{\rm Aut}(SL_ 2))\ne 0$. Let $G$ be a connected $k$-split linear algebraic group acting on $X={\rm Aff}^ n$ rationally by $\rho $ with a Zariski-dense $G$-orbit $Y$. A prehomogeneous vector space $(G,\rho $,X) is called “universally transitive” if the set of $k$-rational points $Y(k)$ is a single $\rho $$(G)(k)$-orbit for all such $k$. Such prehomogeneous vector spaces are classified by J. Igusa when $\rho $ is irreducible. We classify them when $G$ is reductive and its commutator subgroup $[G,G]$ is either a simple algebraic group or a product of two simple algebraic groups.
LA - eng
KW - prehomogeneous vector spaces; Galois cohomology
UR - http://eudml.org/doc/74797
ER -
References
top- [1] J. IGUSA, On functional equations of complex powers, Invent. Math., 85 (1986), 1-29. Zbl0599.12017MR87j:11134
- [2] J. IGUSA, On a certain class of prehomogeneous vector spaces, to appear in Journal of Algebra. Zbl0765.14013
- [3] M. SATO and T. KIMURA, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155. Zbl0321.14030MR55 #3341
- [4] T. KIMURA, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, Journal of Algebra, Vol. 83, N° 1, July (1983), 72-100. Zbl0533.14024MR85d:32059
- [5] T. KIMURA, S. KASAI, M. INUZUKA and O. YASUKURA, A classification of 2-simple prehomogeneous vector spaces of type I, to appear in Journal of Algebra. Zbl0658.20026
- [6] T. KIMURA, S. KASAI, M. TAGUCHI and M. INUZUKA, Some P.V.-equivalences and a classification of 2-simple prehomogeneous vector spaces of type II, to appear in Transaction of A.M.S. Zbl0666.14021
- [7] J. SERRE, Cohomologie Galoisienne, Springer Lecture Note, 5 (1965). Zbl0136.02801MR34 #1328
- [8] H. RUBENTHELER, Formes réelles des espaces préhomogènes irréductibles de type parabolique, Annales de l'Institut Fourier, Grenoble, 36-1 (1986), 1-38. Zbl0588.17007MR87k:17010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.