Analysis on Extended Heisenberg Group

B. Zegarliński[1]

  • [1] CNRS, Toulouse. On leave of absence from Imperial College London.

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 2, page 379-405
  • ISSN: 0240-2963

Abstract

top
In this paper we study Markov semigroups generated by Hörmander-Dunkl type operators on Heisenberg group.

How to cite

top

Zegarliński, B.. "Analysis on Extended Heisenberg Group." Annales de la faculté des sciences de Toulouse Mathématiques 20.2 (2011): 379-405. <http://eudml.org/doc/219787>.

@article{Zegarliński2011,
abstract = {In this paper we study Markov semigroups generated by Hörmander-Dunkl type operators on Heisenberg group.},
affiliation = {CNRS, Toulouse. On leave of absence from Imperial College London.},
author = {Zegarliński, B.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Heisenberg group; Hörmander-Dunkl operators; Coxeter group; Demazure operator; Markov semigroup; coercive inequalities; ultracontractivity estimates; heat kernel; Gaussian bounds},
language = {eng},
month = {4},
number = {2},
pages = {379-405},
publisher = {Université Paul Sabatier, Toulouse},
title = {Analysis on Extended Heisenberg Group},
url = {http://eudml.org/doc/219787},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Zegarliński, B.
TI - Analysis on Extended Heisenberg Group
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 2
SP - 379
EP - 405
AB - In this paper we study Markov semigroups generated by Hörmander-Dunkl type operators on Heisenberg group.
LA - eng
KW - Heisenberg group; Hörmander-Dunkl operators; Coxeter group; Demazure operator; Markov semigroup; coercive inequalities; ultracontractivity estimates; heat kernel; Gaussian bounds
UR - http://eudml.org/doc/219787
ER -

References

top
  1. Aronson (D.G.).— Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 22 (1968) 607-694, Addendum, 25, p. 221-228 (1971). Zbl0182.13802MR435594
  2. Alekseevsky (D.), Kriegl (A.), Losik (M.) and Michor (P.W.).— Reflection Groups on Riemannian Manifolds, Annali di Mathematica Pura ed Applicata. 
  3. Bakry (D.), Baudoin (F.), Bonnefont (M.) and Chafaï (D.).— On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal. 255, p. 1905-1938 (2008). Zbl1156.58009MR2462581
  4. Beals (R.), Gaveau (B.) and Greiner (P.C.).— Hamiltonian-Jacobi Theory and Heat Kernel On Heisenberg Groups, J. Math. Pures Appl. 79, p. 633-689 (2000). Zbl0959.35035MR1776501
  5. Benjamini (I.), Chavel (I.) and Feldman (A.).— Heat Kernel Lower Bounds on Riemannian Manifolds Using the Old Idea of Nash, Proc. of the London Math. Soc. 1996 s3-72(1):215-240; doi:10.1112/plms/s3-72.1.215 Zbl0853.58098MR1357093
  6. Bonfiglioli (A.), Lanconelli (E.), and Uguzzoni (F.).— Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics, Springer (2007). Zbl1128.43001MR2363343
  7. Chow (B.), Lu Peng and Ni Lei.— Hamilton’s Ricci Flow, Grad. Stud. Math., Amer. Math. Soc. (2006). Zbl1118.53001MR2274812
  8. Davies (E.B.).— Heat kernels and spectral theory. Cambridge University Press, Cambridge, 197 pp (1989). Zbl0699.35006MR990239
  9. Davies (E.B.).— Explicit Constants for Gaussian Upper Bounds on Heat Kernels, American Journal of Mathematics, Vol. 109, No. 2 (Apr., 1987) p. 319-333, http://www.jstor.org/stable/2374577 Zbl0659.35009MR882426
  10. Davies (E.B.).— Heat Kernel Bounds for Second Order Elliptic Operators on Riemannian Manifolds, Amer. J. of Math. Vol. 109, No. 3 (Jun., 1987) p. 545-569, http://www.jstor.org/stable/2374567 Zbl0648.58037MR892598
  11. Davies (E.B.) and Simon (B.).— Ultra-contractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59, p. 335-395 (1984). Zbl0568.47034MR766493
  12. Driver (B.K.) and Melcher (T.).— Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal. 221, p. 340-365 (2005). Zbl1071.22005MR2124868
  13. Eldredge (N.).— Precise estimates for the subelliptic heat kernel on H-type groups, J. Math. Pures Appl. 92, p. 52-85 (2009). Zbl1178.35096MR2541147
  14. Eldredge (N.).— Gradient estimates for the subelliptic heat kernel on H-type groups J. Funct. Anal. (2009), http://dx.doi.org/doi:10.1016/j.jfa.2009.08.012. Zbl1185.43004MR2557945
  15. Fukushima (M.).— Dirichlet Forms and Markov Processes, North Holland (1980). Zbl0422.31007MR569058
  16. Gross (L.).— Logarithmic Sobolev inequalities, Amer. J. Math. 97, p. 1061-1083 (1975). Zbl0318.46049MR420249
  17. Grigor’yan (A.).— Gaussian Upper Bounds for the Heat Kernel on Arbitrary Manifolds, J. Differential Geometry 45, 33-52 (1997). Zbl0865.58042MR1443330
  18. Guionnet (A.) and Zegarliński (B.).— Lectures on logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXVI, p. 1-134, Lecture Notes in Math., 1801, Springer, Berlin (2003). Zbl1125.60111MR1971582
  19. Hebisch (W.) and Zegarliński (B.).— Coercive inequalities on metric measure spaces, J. Funct. Anal. 258, p. 814-851 (2010), http://dx.doi.org/doi:10.1016/j.jfa.2009.05.016. Zbl1189.26032MR2558178
  20. Inglis (J.), Kontis (V.) and Zegarliński (B.).— From U -bounds to Isoperimetry with applications to H-type groups, http://arxiv.org/abs/0912.0236. Zbl1210.26017
  21. Grayson (M.) and Grossman (R.).— Nilpotent Lie algebras and vector fields, Symbolic Computation: Applications to Scientific Computing, R. Grossman, ed., SIAM, Philadelphia, p. 77-96 (1989). MR1022023
  22. Junqiang Han, Pengcheng Niu and Wenji Qin.— Hardy Inequalities in Half Spaces of the Heinsenberg Group, Bull. Korean Math. Soc. 45, p. 405-417 (2008). Zbl1158.35339MR2442182
  23. Li (H.-Q.).— Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg, J. Funct. Analysis 236, p. 369-394 (2006). Zbl1106.22009MR2240167
  24. P. Ługiewicz (P.) and Zegarliński (B.).— Coercive inequalities for Hörmander type generators in infinite dimensions, J. Funct. Anal. 247 p. 438-476 (2007), http://dx.doi.org/doi:10.1016/j.jfa.2007.03.00. Zbl1128.58009
  25. Masatoshi Noumi.— Painlevé Equations through Symmetry, Translations of Math. Monographs, vol. 223, AMS (2004). Zbl1077.34003MR2044201
  26. Rösler (M.).— Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators, Communications on Matematical Physics 192, p. 519-541 (1998). Zbl0908.33005MR1620515
  27. Varopoulos (N.), Saloff-Coste (L.) and Coulhon (T.).— Analysis and Geometry on Groups, Cambridge University Press (1992). Zbl1179.22009MR1218884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.